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Abstract The field of computational reinforcement learning (RL) has proved
extremely useful in research on human and animal behavior and brain function.
However, the simple forms of RL considered in most empirical research do
not scale well, making their relevance to complex, real-world behavior unclear.
In computational RL, one strategy for addressing the scaling problem is to intro-
duce hierarchical structure, an approach that has intriguing parallels with human
behavior. We have begun to investigate the potential relevance of hierarchical RL
(HRL) to human and animal behavior and brain function. In the present chapter, we
first review two results that show the existence of neural correlates to key predictions
from HRL. Then, we focus on one aspect of this work, which deals with the question
of how action hierarchies are initially established. Work in HRL suggests that
hierarchy learning is accomplished by identifying useful subgoal states, and that
this might in turn be accomplished through a structural analysis of the given task
domain. We review results from a set of behavioral and neuroimaging experiments,
in which we have investigated the relevance of these ideas to human learning and
decision making.

1 Introduction

Many of the activities and tasks faced by humans and animals are hierarchical in
nature: they involve tackling a set of nested subtasks, each of varying temporal
extension. Problems like navigating involve devising high-level path plans, which
are then broken down into smaller sub-planning problems, that can further be
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decomposed all the way down to the level of motor primitives. For instance, the task
of commuting to work involves deciding whether to take a train, bus or drive, and
based on that decision others must be made: taking a train will require navigating
to the train station, driving might involve subtasks like filling up the gas tank or
checking the state of traffic on the planned route. A hierarchical structure of nested
tasks emerges, which will at some level share components like standing up, sitting
down, walking, and climbing stairs.

Work in cognitive and developmental psychology has recognized the hierarchical
structure of behavior at least since the early 1950s, with the inception of the
cognitive revolution. Prior to that watershed, the dominant schools of thought
had focused on understanding behavior as a simple chain of stimulus-response
associations. Lashley (1951) rejected this idea in favor of understanding behavioral
sequences as controlled through a central plan, rather than as simple reflex chains.
Following up on this perspective, further pioneering work by Miller et al. (1960)
and Schank and Abelson (1977) noted that naturalistic behavior displays a stratified
or layered organization, comprising nested subroutines.

In subsequent years, the hierarchical structure of behavior has been taken
for granted in psychology and neuroscience. Computational models have been
proposed to account for how hierarchically structured procedures are represented
and executed (Botvinick and Plaut 2004; Cooper and Shallice 2000; Schneider
and Logan 2006; Zacks et al. 2007), and how they are represented in the brain, in
particular within the prefrontal cortex (Badre 2008; Haruno and Kawato 2006; Ito
and Doya 2011; Koechlin et al. 2003). An important idea, coming primarily out of
developmental psychology, is that humans and other animals gradually expand their
competence by building up a repertoire of reusable skills or subroutines, which can
be flexibly assembled into increasingly powerful hierarchical programs of action
(Fischer 1980). The question of how this toolbox of skills is assembled represents
one of the toughest questions attaching to hierarchical behavior.

In recent work, we have adopted a novel perspective on the cognitive and
neural mechanisms underlying hierarchical behavior, leveraging tools from machine
learning research. In particular, we have examined the potential relevance to
human behavior and brain function of hierarchical reinforcement learning (HRL),
a computational framework that extends reinforcement learning mechanisms into
hierarchical domains. A number of intriguing parallels exist between HRL and
findings from human and animal neuroscience, which encourage the idea that
HRL may provide a useful framework for understanding the biological basis of
hierarchical behavior. In the following section, we briefly review the essentials
of HRL and summarize some of the potential neuroscientific parallels. We then
present results suggesting neural correlates to two key predictions arising from
computational HRL models. Next, we focus on a deep and open question: how is
hierarchical structure established? What constitutes a “good” task decomposition?
One appealing aspect of HRL is that it provides a context within which to consider
the “toolbox” question, the question of how useful skills or subroutines are initially
discovered or constructed. Following our brief introductory survey, we describe a
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set of behavioral and neuroimaging experiments in which we have leveraged ideas
from HRL to tackle this question.

2 Hierarchical Reinforcement Learning

Computational reinforcement learning (RL) has emerged as a key framework for
modeling and understanding decision-making in humans and animals. In part, this
is due to the fact that RL provides a normative computational model of behavior
accounting for a host of previous experimental results in classical and instrumental
conditioning. But most importantly, its impact has been felt through the discovery of
parallels between elements of RL and aspects of neural function. The most critical
parallel pertains to midbrain dopaminergic function, which has been proposed to
transmit signals comparable to the reward-prediction errors that lie at the heart
of RL (Houk et al. 1995; Montague et al. 1996; Schultz et al. 1997). However,
other broader parallels have also been proposed, in particular with the so-called
actor-critic RL architectures, which have inspired new interpretations of functional
divisions of labor within the basal ganglia and cerebral cortex (Joel et al. 2002).
Our research asks whether these connections between RL and neurobiology might
extend to the setting of hierarchical behavior. Based on the success of standard RL as
a framework for understanding the neural mechanisms underlying simple decision
making, we hypothesize that HRL may hold similar promise as a framework for
understanding the neural basis of hierarchical action.

Computational HRL was born, in part, out of the attempt to tackle the problem of
scaling in RL. As researchers in the field recognized early on, one of the problems of
basic RL methods is that they cannot cope well with large domains, that is, problems
that require learning about large numbers of world states or large sets of possible
actions. To make matters worse, RL suffers from what is known as the curse of
dimensionality, an exponential explosion in the number of states as we increase
the number of state variables, or features of the problem, that we want to consider.
The result is that any task that requires keeping tabs on more than a handful of
variables soon becomes intractable for standard RL algorithms.

A number of computational approaches have been proposed to address the
scaling issue. One of them is to reduce the size of the problem at hand by treating
subsets of states as behaviorally equivalent, known as state abstraction. Consider,
for example, that you are walking to the train station, on your way to work. For this
task, whether the shops along the way are open or closed is irrelevant, so two
states that only differ in the status of a store can be grouped together. On the
other hand, if later on you are navigating the same streets with the goal of buying
coffee, a different set of variables becomes relevant, and states should be abstracted
differently. For different state abstraction methods and aggregation criteria see, Li
et al. (2006).

Another approach to addressing the scaling problem—the one taken in HRL—
is based on temporal abstraction (Barto and Mahadevan 2003; Dayan and Hinton
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1993; Dietterich 2000; Parr and Russell 1998; Sutton et al. 1999). The general idea
is to expand the standard RL framework to include temporally-extended macro-
actions, grouping together sets of simpler actions to form more complex, higher-
level routines. Following the example mentioned earlier, the skill of getting to work
can be thought of as a representation for a set of lower-level sequences like walking
to the train station, taking the train and walking from the station to work. Moreover,
the same get to work skill can encompass more than one set. For example, this skill
might consist of not only a set of actions involving the train but also a different
set that consists of actions like walking to the car, starting it, driving to work, etc.
These multiple representations, abstracted away into the skill of getting to work,
enable learning and reasoning at a coarser, more tractable granularity.

One particularly influential implementation of HRL, the options framework, was
proposed by Sutton et al. (1999). The options framework supplements the set of
single-step, primitive actions from standard RL with a set of temporally-extended
“options”. An option is, in a sense, a temporary sub-policy, a mapping from states
to actions that does not have the goal of solving the complete problem at hand, but
rather some sub-task that is, ideally, a step towards a larger goal. In this formalism,
an option is defined by an initiation set, indicating the set of states from which the
option can be selected; a termination function, which specifies the set of states that
trigger termination of the option; and an option-specific policy (a mapping from
states to actions that is in effect while the option is active).

Importantly, in the options framework as in other versions of HRL (Dietterich
2000; Parr and Russell 1998), option-specific policies can map states not only into
primitive actions but also into other options, allowing hierarchies of options to be
assembled. In the previous example, it is clear that walking to a train station or to
the car are not “primitive” actions, but compound, temporally extended behaviors
that involve numerous more basic skills and can be achieved in a multiplicity of
ways. In an HRL setting, an option for getting to work would call other options for
walking to the train station or the car, these would call further options guiding the
action of walking, and so forth down to elementary motor commands.

3 Potential Neural Correlates

We see two reasons for considering the potential relevance of HRL to understanding
behavior and brain function in humans and other animals. First, if the brain does
indeed implement learning mechanisms related to those found in RL, then the RL
scaling problem must pertain in neuroscience just as it does in machine learning,
raising the question of how RL mechanisms in the brain cope with large-scale tasks.
As a computational technique for easing the scaling problem, HRL may furnish
clues concerning the brain’s ability to select adaptive behaviors in such settings.
The second motivation for considering HRL from a neuroscientific perspective is, of
course, the pervasively hierarchical structure of human behavior. HRL presents the
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possible opportunity to extend our understanding of neural mechanisms for RL so as
to engage the issue of hierarchy, significantly widening the scope of current theories.

As a first step toward evaluating the potential neural relevance of HRL, Botvinick
et al. (2009) derived a set of predictions from the framework, evaluating the extent
to which current scientific knowledge accorded with each of its elements.This work
leveraged the existence of proposed parallels between elements of the actor-critic
architecture for RL (see Sutton and Barto 1998) and specific brain structures.
Botvinick et al. considered what additions or alterations would be required in order
to extend the actor-critic architecture for HRL. It turns out that only a handful of
modifications are needed, and each of these appears to resonate with established
neuroscientific findings.

A key parallel pointed out by Botvinick et al. (2009) relates to the computational
requirement, within HRL, of maintaining a representation of the currently selected
option. This function seems very closely related to functions commonly ascribed to
the dorsolateral prefrontal cortex (DLPFC), and other frontal areas including pre-
supplementary motor area (pre-SMA). The DLPFC has been suggested to house
representations that guide temporally integrated, goal-directed behavior (Fuster
1997), and recent work has refined this idea by demonstrating that DLPFC neurons
play a role in representing task sets: a single pattern of DLPFC activation represents
an entire mapping from stimuli to responses (that is, a policy; see Miller and Cohen
2001). Moreover, neurons in several frontal areas (DLPFC, pre-SMA and SMA)
have been shown to code for particular sequences of low-level actions, just like
options do in HRL. Evidence also shows that areas in frontal cortex represent action
at multiple, nested levels of temporal structure (see Badre 2008; Koechlin et al.
2003), akin to the way HRL representations organize tasks into hierarchies, with
policies for one option calling other, lower-level options.

The role of options in HRL is to impose an option-specific policy. In translations
of RL into neuroscience, policy representations have been proposed to reside
at least partially within the dorsolateral striatum. From the point of view of
the HRL hypothesis, it is suggestive that DLPFC, SMA, and pre-SMA areas
all project heavily into this structure, potentially allowing modulation of policy
representations by representations of subtask context. Botvinick et al. (2009) review
neurophysiological findings consistent with this idea.

Another computational requirement of HRL is to maintain option-specific value
functions. As discussed in Botvinick et al. (2009), this is needed because the value
of a state relative to the goals of an option or subroutine may differ from the
value of that state relative to top-level goals (i.e., primary reward); option-specific
value functions are thus critical for driving the learning of subroutine policies.
In work drawing parallels between standard RL and neural structures, an area
often linked with state or state-action value representation is the ventral striatum.
If HRL mechanisms are relevant, then we might expect to find a neural structure
that connects to ventral striatum while at the same time receiving inputs from
areas of frontal cortex that carry option representations. An area that meets this
criterion is the orbitofrontal cortex (OFC), connecting heavily with both ventral
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striatum and DLPFC. As reviewed by Botvinick et al. (2009), research suggests that
representations of reward in OFC can be sensitive to shifts in response strategy or
task set (O’Doherty et al. 2003; Schoenbaum et al. 1999), linking precisely with the
idea that OFC might represent option-specific state values. The OFC also appears
to sustain reward-predictive activity over relatively extended periods (Schultz et al.
2000), a function necessary in HRL to support the calculation of reward-prediction
errors when options terminate.

As detailed in Botvinick et al. (2009), neural HRL would also impose specific
functional requirements on reward-prediction errors, widely believed to be signaled
in the brain by phasic fluctuations in dopamine release. Whereas in ordinary RL
prediction errors signal whether the selection of single actions turns out better or
worse than expected (see Sutton and Barto 1998), under HRL the scope of the
prediction error expands to embrace the intervals spanned by options. This resonates
with a theoretical analysis of dopamine signaling by Daw et al. (2003), interpreting
dopamine function in computational (semi-Markov) terms that also underlie the
options framework.

Two key neural predictions arise from HRL. First, in order to sustain learn-
ing of option-specific value functions at various levels of a hierarchical task
decomposition, multiple prediction error signals are required, sometimes occurring
concurrently. Second, HRL predicts that reward prediction errors should occur not
only in association with top-level goals (marked by primary reward), but also in
connection with subgoals. In both cases, previous research provides little to go
on. In the next two sub-sections we present work indicating the presence of neural
correlates to the two key predictions from HRL. First, we summarize results from
an fMRI experiment (Diuk et al. 2012b) which revealed striatal activity correlating
with two simultaneous prediction error signals, corresponding to two levels of a
hierarchical gambling task. Next, we review work by Ribas-Fernandes et al. (2011)
in which we used EEG and fMRI to assay for subgoal-linked reward prediction
errors and found activations consistent with these in multiple structures including
anterior cingulate cortex, insula, habenula, and amygdala.

Taken together, available neural data encourage the idea that HRL may be
relevant to understanding the neural substrates of hierarchical behavior in humans
and animals. Even if this turns out to be true, however, there are limits on what
present-day HRL research can tell us about brain function, given that computational
HRL is associated with its own open questions. Perhaps foremost among these is
the problem foreshadowed earlier: how an agent may initially build up a repertoire
of useful subroutines (options) from which hierarchical action programs may be
composed. This question, which in HRL research has sometimes been referred to as
the “option discovery problem”, is clearly of equal importance within psychology
and neuroscience, and we will dedicate the rest of the chapter to work in which we
have begun to address it.
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3.1 Two Simultaneous, but Separable, Reward Prediction
Errors

Under the HRL options framework, a situation can arise in which the outcome of an
action elicits learning at multiple hierarchical levels at the same time. For example,
the execution of a primitive action a that leads to a sub-goal state enables learning
both about the one-step transition produced by the action, and the temporally-
extended subtask that ended with the attainment of the sub-goal. This situation
prescribes the presence of two distinct reward prediction errors.

If the brain implements an HRL mechanism, we should be able to measure
activity correlating with at least two prediction errors at the same time. In order
to test this key HRL prediction, we designed a two-level gambling task (Diuk et al.
2012b), which constitutes a hierarchical extension of the classic bandit task used in
previous RL research. The task is summarized in Fig. 1. In each trial, participants
first chose between two doors, representing two casinos. Once a casino was chosen,
its door opened and a “target” was revealed a number of points (2–10, distributed
normally with means 5 and 6 in each of the two casinos) that must be accumulated in
order to gain a reward of 10 cents in the casino. Each casino also contained a unique
set of four slot machines, of which participants chose two to play. Each slot machine
granted 0–5 points, normally distributed, with an independent, slowly drifting mean.
If they did not succeed in meeting the target with their two plays, participants lost
10 cents.

This task was designed to elicit learning at two levels: at the slot-machine level
(to inform choices within a casino) and at the casino level (to inform choices
between the two casinos). In particular, two distinct and coincident prediction errors
should occur after playing the second slot machine, when the point outcome of that
machine is revealed simultaneously with the win/lose outcome of the casino as a
whole. Importantly, in this design these two prediction errors are uncorrelated: It is
possible to obtain fewer points than expected on the second slot machine (a negative
slot-level prediction error) while at the same time still win the casino as a whole (a
positive casino-level prediction error), and vice versa.

We asked 28 participants to play the Casino Task for 120 trials each while
undergoing functional Magnetic Resonance Imaging (fMRI) (Diuk et al. 2012b).
We modeled the participants’ learning under the options framework, where playing
the left or the right casino constituted two temporally-extended options and each
options’ policy consisted of choosing which slot machines to play. We verified that
the HRL model best fit the participants behavior when compared to some otherwise
plausible alternative models and used the prediction errors generated by this model
as regressors to correlate against the registered brain activity. We analyzed in
particular the activity in ventral striatum and found it correlated with all three
regressors generated by the model, corresponding to prediction errors for the first
slot machine (p < 0:004), second slot machine (p < 0:02), and the casino as a
whole (p < 5:5�10�5). Note that prediction errors for the second slot machine and
the casino occurred simultaneously.
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Fig. 1 Sample trial (from Diuk et al. (2012b): The participant chooses to play in the left casino, the
door opens and displays a target number of points (indicated by red bar). After a few seconds, the
four slot machines appear. The participant plays upper-left slot and after a few seconds, the points
obtained in that machine are shown inside the machine (as a green bar plus a Roman numeral).
Part of the target turns yellow, indicating the points accumulated with the first slot machine play.
The rest is still red, indicating the points still necessary to win the casino. The participant plays the
bottom right slot machine and obtains sufficient points to win the casino (10 cents). The target bar
turns green and a message appears indicating the casino win

These results have two major implications: The first is that the human brain can
calculate prediction errors that temporally span over several states and actions, as
is required in HRL (Botvinick et al. 2009). The second implication is that more
than one prediction error signal may be calculated and employed for learning in
the brain, in contrast to original studies which suggested that dopaminergic neurons
all report one unitary prediction error signal Schultz et al. (1997). This may not
be surprising from a theoretical point of view, as learning about two (or more)
separate reward predictions within any given scenario requires the calculation of two
separate prediction errors. Such a dual-task situation may be common in daily life.
However, reinforcement learning tasks previously examined in laboratory settings
did not directly test this prediction.

3.2 Neural Correlates of Pseudo-reward

A second prediction states that prediction errors should occur in connection with
task subgoals as well as with top level goals. HRL agents associate a special form of
reward with subgoals, dubbed pseudo-reward (Sutton et al. 1999). Distinguishing
pseudo-rewards from primary reward is crucial: If subgoals were confounded with
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Fig. 2 Task and predictions from HRL and RL (from Ribas-Fernandes et al. 2011). Left: Task
display and underlying geometry of the delivery task. Right: Prediction-error signals generated
by standard RL and by HRL in each category of jump event. Gray bars mark the time-step
immediately preceding a jump event. Dashed time-courses indicate the PPE generated in C and
D jumps that change the subgoal’s distance by a smaller amount

primary reward, the agent might get stuck “chasing” subgoals, even when irrelevant
to top-level goals. The distinction between pseudo and primary rewards results in
a distinction between two types of prediction errors: ordinary reward prediction
errors (RPEs) occur in response to differences in predicted outcomes in progress
towards primary goals. Pseudo-reward prediction errors (PPEs) occur in response to
outcomes in progress towards subgoals. PPEs are unique to HRL, they do not occur
in ordinary, “flat” RL. If HRL is relevant to neural activity, we should expect to see
neural correlates of PPEs. Ribas-Fernandes et al. (2011) designed a task to test this
prediction, using EEG and fMRI to assay for a neural analogue to the pseudo-reward
prediction error.

Figure 2 illustrates the task. Only the colored elements in the figure appear in
the task display. The overall objective of the game is to complete a “delivery” as
quickly as possible, using joystick movements to guide the truck first to the package
and from there to the house. It is self-evident how this task might be represented
hierarchically, with delivery serving as the (externally rewarded) top-level goal and
acquisition of the package as an obvious subgoal. For an HRL agent, delivery would
be associated with primary reward, and acquisition of the package with pseudo-
reward.

An additional twist was that on some trials, the package unexpectedly jumped to
a new location before the truck reached it. According to RL, a jump to point A in
the figure, or any location within the ellipse shown, should trigger a positive RPE,
because the total distance that must be covered in order to deliver the package has
decreased. (Note that we assume temporal discounting, which implies that attaining
the goal faster is more rewarding.) By the same token, a jump to point B or any other
exterior point should trigger a negative RPE. Cases C, D, and E are quite different.
Here, there is no change in the overall distance to the goal, and so no RPE should
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be triggered, either in standard RL or in HRL. However, in case C the distance to
the subgoal has decreased. According to HRL, a jump to this location should thus
trigger a positive PPE. Similarly, a jump to location D should trigger a negative PPE
(note that location E is special, being the only location that should trigger neither
an RPE nor a PPE). These points are illustrated in the right panel of Fig. 2, which
shows RPE and PPE time-courses from simulations of the delivery task based on
standard RL and HRL.

A group of 30 participants performed the delivery task while undergoing fMRI.
Here, one third of the trials included a jump of type D (see Fig. 2), predicted to elicit
a negative PPE. Neural correlates for such a jump were found in dorsal anterior
cingulate cortex and habenula, structures previously suggested to reflect or induce
reduced dopaminergic activity.

Because these PPEs are unique to HRL, not occurring in standard RL, Ribas-
Fernandes et al. (2011) interpreted these results as providing a neural signature of
HRL.

4 The Option Discovery Problem: Identifying Useful
Subgoals

In the field of computational HRL, research has focused on the problem of how
temporally-extended actions can be incorporated into the standard RL formalism.
Some success has been achieved in showing how skills that are provided to the
learner as input, or have somehow been previously acquired, can be exploited in
order to learn to solve new problems faster (Dietterich 2000; Sutton et al. 1999).
However, less work has been done, and less success has been achieved, on the very
difficult question of where skill representations come from. How does a learner
decide, while performing a task, what components of it are worth incorporating into
a collection of skills for future use? This question has added relevance because the
wrong set of skills can actually impair learning (Botvinick et al. 2009).

In computational work, option discovery has often been understood to involve the
heuristic identification of useful subgoal states. Once a useful subgoal is identified,
the learner can then build a strategy to achieve it, turning this strategy or policy
into a reusable skill. Note that these subgoal states are not necessarily extrinsically
rewarding, that is, the learner might not receive any reward for reaching them. A key
assumption of HRL is that the agent is motivated to reach an option’s subgoal, once
the option gains control of behavior. In HRL, as discussed in the previous section,
attaining the subgoal yields a special reward signal, referred to as pseudo-reward,
which serves to sculpt the option’s policy. However, for this machinery to come
into play, pseudo-reward must be assigned to specific outcomes, and therefore the
question persists: How are useful subgoal states initially identified?

A number of possible answers to this question can be drawn from both the
computational literature and from psychology and neuroscience. One class of
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proposals portrays options and subgoals as genetically specified, shaped by natural
selection across generations (Elfwing et al. 2007; Schembri et al. 2007a,b). Basic
motor behavior, for example, has often been characterized as building upon simple,
innate components (Bruner 1975). In a few cases, extended action sequences,
such as grooming in rodents, have also been thought of in the animal behavior
literature as genetically specified (Aldridge and Berridge 1998). While a role
for evolutionary programming seems inevitable, it clearly cannot be the whole
story, since both humans and animals obviously discover and incorporate useful
behavioral subroutines through learning (Conway and Christiansen 2001; Fischer
1980).

Another approach to explaining subgoal discovery leverages the notion of
intrinsic motivation (Baldassarre and Mirolli 2012). The idea here is that certain
events or stimuli are inherently interesting to the behaving animal or human.
These can be stimuli that display salient perceptual properties or that challenge
expectations, eliciting curiosity (Schmidhuber 1991a,b). In an HRL context such
states are proposed to be adopted as subgoals, triggering the construction of
associated skills or options (see Singh et al. 2005).

The intrinsic motivation perspective provides a compelling account of option
discovery. However, without greater specification, it leaves open the question of
which properties make particular states intrinsically motivating or interesting to the
agent. In order to set the scene for our own research in this area, we can consider
two general approaches, one based on frequency and the other on problem structure.

Frequency-based methods are based on observed trajectories (that is, sequences
of actions that are performed to solve a task). These methods are based on the idea
that an animal or human that has experienced a series of interrelated problems, or
has had repeated exposure to a problem, is able to extract either subsequences or
subgoal states based on their frequent occurrence in trajectories that lead to reward.
For example, consider a delivery person distributing packages inside a building.
After repeated deliveries, this person might construct some pre-defined ways of
traversing certain floors. Furthermore, he might realize that many trajectories
involve taking the elevator. He would thus identify reaching the elevator as a useful
sub-goal, and construct paths that lead from different offices in a floor to the closest
elevator, adding to his repertoire of actions what we could call the go to elevator
option. Proposals based on this idea can be found in the work of McGovern and
Barto (2001); Picket and Barto (2002); Thrun and Schwartz (1995); Yamada and
Tsuji (1989).

To introduce structure-based methods it is useful to consider why, in the
aforementioned delivery example, the elevator state emerged as special. In this
scenario, the elevator state occurs frequently because the elevator is a sort of
bottleneck: to reach any location on one floor from another floor, one must pass
through the elevator. The elevator is thus a location that gives access to an unusually
diverse set of other locations. A more formal way of capturing this property can
be drawn from graph theory. If we envision the various locations (say, cubicles
and offices in our courier’s building) as nodes in a graph, with edges connecting
immediately adjacent locations, then the elevator location would stand out as a node
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a b

Fig. 3 (a) One state of the Tower of Hanoi problem. Disks are moved one at a time between posts,
with the restriction that a disk may not be placed on top of a smaller disk. An initial state and goal
state define each specific problem. (b) Representation of the Tower of Hanoi problem as a graph.
Nodes correspond to states (disk configurations). Shades of gray indicate betweenness. Source:
Şimşek (2008)

with high graph centrality (see Opsahl et al. 2010). A particular way of quantifying
centrality is via a measure called betweenness, which counts the number of shortest
paths within the graph that pass through an index node. An illustration, from Şimşek
(2008), is shown in Fig. 3.

Şimşek (2008) and Şimşek and Barto (2009) proposed that option discovery
might be fruitfully accomplished by identifying states at local maxima of graph
betweenness (for related ideas, see also Şimşek et al. (2005); Hengst (2002); Jonsson
and Barto (2006); Menache et al. (2002). They presented simulations showing that
an HRL agent designed to select subgoals (and corresponding options) in this way,
was capable of solving complex problems, such as the Tower of Hanoi problem in
Fig. 3, significantly faster than a non-hierarchical RL agent.

As part of our research exploring the potential relevance of HRL to neural
computation, we evaluated whether these proposals for subgoal discovery might
relate to procedures used by human learners. The research we have completed so
far focuses on the identification of bottleneck states, as laid out by Şimşek and
Barto (2009). In what follows, we summarize the results of three experiments, which
together support the idea that the notion of bottleneck identification may be useful
in understanding human subtask learning.

5 Experiments 1 & 2: Humans Identify and Exploit
Bottleneck States

In the first experiment we investigated whether humans can identify bottleneck
states, when doing so allows them to optimize their performance. We summarize
the experiment and its results here; full details are presented in Diuk et al. (2012a).
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Fig. 4 Interface of experiments 1 & 2. (a) At the top, the current location (Park) is identified
along with its three adjacent locations. Circled at the bottom is the target destination (School), and
on the upper right corner is the bus-stop location (Post office), reachable in one step from any other
location. (b) The square identifies the current location (School), and participants must click on its
three neighbors

Participants were asked to navigate through a small town, making an extended
series of deliveries between landmarks (e.g., school, post office, coffee shop). A new
start location and goal location were randomly selected at the beginning of each trial
(delivery). Participants were told that they would be paid for each delivery, but that
the amount would depend on how many steps they took to reach their goal: each
step would subtract a fixed amount from the “full pay.” The graphical interface,
illustrated in Fig. 4a, indicated the participant’s present location, the goal location,
and the set of landmarks immediately adjacent to it. Navigation was accomplished
by selecting among the latter. Also shown was a “bus stop” location to which the
participant could travel from any location using one step. After some experience
with the “town,” the participant was allowed to choose a new bus-stop location after
every five deliveries. Any landmark within the town could be chosen for the bus-
stop location. At any time during a delivery, the participant could elect to “jump” to
the bus stop, potentially saving costly steps toward the goal.

Underlying the adjacency relations among landmarks in the town was the graph
shown in Fig. 5a. Each node corresponds to a landmark, and each edge to an
adjacency relation. The graph contains an obvious bottleneck location, which has
high graph betweenness. This location represents the best choice for the bus-stop
location; given the definition of betweenness, this location lies on the largest number
of shortest paths within the graph, and therefore offers the best chance of saving the
participant steps toward a delivery to a yet-unknown destination.

Note that participants were never actually shown the graph in Fig. 5a, or any
other sort of bird’s-eye view of the town. The display only provided information
about local adjacencies. Nevertheless, we hypothesized that, with accumulating
experience, participants would identify the bottleneck location and exploit it by
selecting it as a bus-stop location. Figure 6 summarizes the results of the experiment.
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Fig. 5 Graphs underlying the maps of the cities for the first version of the experiment (a) and the
second one (b). Node labels identify the betweenness of each node
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Fig. 6 (a) Average performance ratio, over all participants, as a function of trials of experience
with the “town.” The value on the y-axis in the figure represents the ratio of steps taken to the
minimum number of steps, taking into account the optimal bus-stop location. A ratio of 1 indicates
optimal performance, i.e., choice of the shortest path from start to goal, assuming an optimal
(bottleneck) choice of bus stop. The two dashed data series indicate minimum and maximum
score across participants. (b) Number of times, out of 16 five-trial blocks, that the bottleneck
state was chosen for the bus-stop location. Participants in the x-axis are sorted by performance.
The horizontal line indicates the expected performance if participants chose bus-stop locations
randomly

Panel a shows that, over the course of the experiment, participants increasingly
picked out the shortest path from start to goal. This simply provides evidence that
participants learned something about the layout of the town as they went along.
More important are the data in panel b, which show the number of blocks (out of a
total of 16) in which each participant chose to place the bus stop at the bottleneck
location. Although there was some variability across participants, the data clearly
confirm a general capacity to detect and exploit the presence of a bottleneck.

The results of this experiment do not, however, allow us to make conclusions
about how participants identified the bottleneck location. In particular, while we
were interested in the possibility that they leveraged structural or topological knowl-
edge, it is possible that participants instead used simple frequency information. Over
the course of multiple shortest-path deliveries, the bottleneck location would be
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expected to occur frequently, compared with other locations. In order to rule out
frequency as the full explanation for our initial findings, we repeated Experiment 1,
but with a twist. In this revised version (Experiment 2), participants learned about
adjacency relations, but did not ever traverse the town before choosing a bus-stop
location. This follow-up experiment was also intended to address a second limitation
of the first experiment. Note that in the graph used in the first experiment, not all
vertices had the same degree (i.e., the same number of immediate neighbors). While
vertices on the “outskirts” of the city had three neighbors, the bottleneck vertex
and those adjacent to it had four. In principle, this might have made the bottleneck
salient, providing a different explanation for its selection.

Experiment 2, reported in detail in Diuk et al. (2012a), removed the confound
between centrality and frequency and used a graph in which all vertices had the
same degree (Fig. 5b). Figure 4b illustrates the graphical interface for the task.
On each trial, an index location was highlighted, and participants were asked to
indicate its three immediate neighbors, receiving feedback concerning the accuracy
of their choices. After approximately 20 min on this training task, participants were
told they would have to make a delivery between two undisclosed locations, under
the same shortest-path conditions as in Experiment 1. Prior to receiving the delivery
assignment, participants were asked to choose a location for the bus stop. After
they had chosen a location, their knowledge of the underlying topology of the town
was tested by asking them to draw a map, indicating adjacency relations between
landmarks. Of forty participants tested, 23 drew an accurate map of the town, and of
these 23, 18 (78 %) chose one of the bottleneck locations as the bus-stop location, a
result far above the chance level of 20 %.

In a further experiment, which we only briefly summarize here, Diuk et al.
(2012a) showed that when participants were given a start and goal location, and
asked to verify whether a third location would fall on a shortest delivery path,
they were especially fast at responding the question when the probe location
corresponded to a domain bottleneck. The finding suggests participants formulated
delivery plans using bottleneck locations as subgoals.1

Together, the foregoing provide support for the idea that humans can identify
and exploit bottleneck states in a novel domain, based on an internal model of the
domain’s structure. Taken on their own, however, they leave open a second question.
The computational proposal from HRL was that bottleneck locations provide the
anchor for temporal abstractions, representations that treat temporally extended
behaviors as a unit. The experiments just reported do not speak to this aspect of
the theoretical proposal. However, we can glean some pertinent evidence from a
third experiment.

1This particular result provides preliminary evidence for “model-based” hierarchical planning in
the Diuk et al. (2012a) delivery task.
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6 Experiment 3: Bottleneck States and Temporal Abstraction

Our approach in Experiment 3 was based on previous work using event parsing.
A standard experimental paradigm in cognitive psychology involves showing an
action sequence, and asking participants to “parse” it by pressing a key when they
feel that one subsequence or subtask has ended and a new one has begun (Zacks et al.
2007). Consistent with earlier work, we assumed that such parsing responses mark
the boundaries of temporally abstract events, i.e., subsequences that the participant
views, on some level, as a unit. Based on this assumption, we predicted that if
participants were exposed to event sequences that involved bottlenecks, participants
would parse those sequences at moments in which a bottleneck was traversed.
Details of our experiment are reported in Schapiro et al. (2013); we summarize
the work here.

Participants were exposed to a sequence of images presented one at a time over
a period of 35 min. During this exposure period, participants were asked to judge
whether each image was presented in a canonical orientation, or rotated. The task
did not require them to attend to the sequential order of images at all. However,
unbeknownst to the participants, that order was highly structured. Specifically, the
sequence was generated by a random walk through the graph shown in Fig. 7a. Each
of the 15 possible images was assigned to a vertex, and when that vertex occurred in
the random walk, the associated image was presented. As is obvious from the figure,
the graph contains a subset of bottleneck vertices with high betweenness, namely the
vertices that link the three star-shaped clusters. Drawing on the complex network
literature, we refer to these clusters as “communities” (see Schapiro et al. 2013).

After performing the orientation judgment task, the sequence of images contin-
ued, but participants were asked to perform the standard parsing task, pressing a
key when “natural breakpoints” occurred, i.e., when one “subsequence” ended and
a new one began. No instruction other than this was given.

Results indicated that participants were significantly more likely to parse at
moments where the sequence moved from one star-shaped cluster into another (p <

0:05), points corresponding to the traversal of high-betweenness vertices. This result
held even when the analysis was limited to Hamiltonian cycles through the graph
(traversals of the graph without item repetitions), showing that parsing decisions
were not based entirely on item recency judgments or simple effects of priming.

We additionally hypothesized that stimuli grouped together as part of the same
event on the basis of community structure might come to be represented more
similarly in the brain. Participants in a new experiment were exposed to sequences
of stimuli generated from the graph in Fig. 7 in the fMRI scanner. To test the
hypothesis that items in the same community would be represented more similarly,
we analyzed the similarity of the patterns of voxel activation evoked by the stimuli in
searchlights throughout the brain. We found that the patterns of activation for items
within a community were more similar than those for items between communities
in left IFG, anterior temporal lobe (ATL), insula, and superior temporal gyrus (STG)
(see Fig. 8).
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Fig. 7 (a) Underlying graph of the task. Each node in the graph is linked to a stimulus used in
the sequence. (b) Proportion of times participants parsed sequence at cluster-changing points, as
opposed to other points in the sequence

Fig. 8 Pattern similarity effects in left IFG/insula, left ATL, and left STG. Each cluster showed
reliable community structure in the BOLD response in a whole-brain search. The similarity
structure within each area is visualized using multi-dimensional scaling, with items color-coded
in accordance with the graph nodes in Fig. 7
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The relation of this experiment to HRL-like action selection is necessarily indi-
rect, given that the task involved observation rather than production of sequences.
However, the results are in line with the idea that bottleneck states are not only
spontaneously identified by humans, but that bottlenecks provide a basis for the
formation of temporally abstract event representations. This is consistent with the
proposal that bottleneck states provide anchors for the construction of temporally
abstract action representations, i.e., options, although further experimentation will
be needed to validate this inference.

7 Discussion

The development of the field of computational RL, together with the discovery
of its neural implications, has proven extremely useful in the study of human
and animal behavior and brain function. A known limitation of standard RL,
however, is its poor scaling to large, real-world problems. Given this limitation,
it is unreasonable to expect basic RL principles to account for human learning and
decision making in their full complexity. However, the possibility arises of looking
at measures proposed by the computational community to deal with the scaling
problem, evaluating their possible relevance to the biological case. We reported
work that takes this approach, examining one aspect of complex behavior, namely its
hierarchical structure. In the work we have reported, the aim was to leverage existing
work in HRL, a sub-field developed precisely for tackling the scalability problem,
to shed light on how humans might learn to master hierarchically-structured tasks.
Our agenda was further reinforced by evidence of potential neural correlates that
map nicely with existing HRL frameworks.

One aspect of hierarchical learning, which has provided an important focus for
our work, involves the challenge of discovering useful subtask decompositions. On
the computational front, this problem has suggested a form of intrinsic motivation,
which leads learning agents to identify problem states as sub-goals, constructing the
necessary skills to achieve them. The work we have reviewed tested the relevance
of this idea to human learning and decision making. In particular, we explored one
approach to this problem, based on structural task analysis. We presented three
experiments whose results are consistent with the idea that humans are able to learn
the topological structure underlying a problem domain, to detect states associated
with high centrality (in the graph-theoretic sense), and to adopt them as useful
subgoals and as anchors for temporally abstract event representations.

One outstanding question is how subtasks are transferred, once learned. Even
though many hierarchical problems share exactly matching subtasks (boiling water
for the preparation of both tea and coffee), many other problems faced by humans
and animals have only partially overlapping states or actions. A richer understanding
of subtask learning should include a mechanism for such less constrained transfer.

Overall, the work we have reviewed, together with convergent evidence available
from previous studies, suggests that HRL may provide a useful set of tools for
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further investigating the computational and neural basis of hierarchically structured
behavior. In this sense, HRL may play the same catalytic role, in the context of
hierarchical behavior, that ordinary RL has so fruitfully played in the study of
performance in simpler tasks.
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