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Slots in CA1 

The Ketz et al. (2013) model and previous versions of this model (e.g., 1) grouped the 
units in ECin, ECout, and CA1 into distinct “slots”, in which particular subsets of units in 
ECin/ECout connected only to particular subsets of units in CA1. This was intended to reflect 
the topographic organization of the MSP — ventral, dorsal, medial, and lateral projections 
remain relatively segregated (2). The topography is coarse, though, and it seems likely that 
the stimuli used in prior statistical learning experiments (e.g., 3) would have representations 
that fall within a small enough portion of EC to make the topography largely irrelevant. We 
therefore did not use slots in the current simulations. 

However, it remains possible that slots played an important functional role in prior 
episodic memory simulations using this model. To test this, we ran simulations using the 
classic AB-AC interference paradigm. In this paradigm, the model learns a set of item pairs 
AB followed by an interfering set AC. This blocked presentation causes catastrophic 
interference in cortical models but poses little challenge for the hippocampus model. We used 
the hip.proj network and inputs from (4). We modified the project to use a new seed for each 
run and to re-initialize the sparse projections and weights randomly for each run. We then ran 
20 networks with the default slot setup, and 20 networks with slots removed. We 
implemented the slot removal by changing all projections in and out of CA1 that used 
GpOneToOne to FullPrjn, and setting CA1 inhib to operate over the entire layer with gi=2.0. 

We ran 6 epochs of AB training, followed by 6 epochs of AC training. Surprisingly, 
the model without slots exhibited less interference: At the end of the 12 epochs, the slot 
model had mean AB performance of 0.66 and mean AC performance of 0.98, whereas the no-
slot model achieved performance levels of 0.83 and 1.0, respectively. Both AB and AC 
performance were significantly better without slots (AB: t[38]=4.21, p<0.001; AC: 
t[38]=2.08, p=0.04). Thus, slots are not likely to be necessary for this kind of episodic 
memory model, at least when simulating domains with stimuli processed within small 
patches of EC. 

We did not test earlier versions of the model that used a pre-trained MSP (discussed 
in Methods), so it is possible that those models did benefit from the slot structure, especially 
given their use of Hebbian learning. However, the simulations above suggest that the latest 
model, which uses online error-driven MSP training and has a greater memory capacity than 
previous versions, may benefit from more diffuse connectivity. It is also worth noting that our 
MSP findings can generalize to slot-based architectures insofar as slots contain at least partial 
representations of more than one item. 
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Supplementary Figure 1. Timecourse of pair structure learning. (A) Pattern similarity in the initial 
response in each hidden layer between two members of a pair (e.g., AB) and between two items that 
transitioned between pairs (e.g., DA), over the course of the 10 epochs of training. Pair similarity 
increases initially in DG and CA3 but weakens over time due to memorization of transition pairs, 
which fully catch up to and even slightly surpass the pairmate similarity. The non-monotonic change 
in the TSP initial response also occurred when pure Hebbian learning was used in the TSP. (B) 
Retrieval in ECout of an item given its pairmate and retrieval of an item given an adjacent across-pair 
item (D à A), with the MSP lesioned. It is worth noting that although the MSP, in addition to the 
TSP, is important for episodic learning, MSP lesions were much less detrimental to learning the 
sequences that did not require statistical learning (i.e., with pairs presented separately). In that case, 
the highest mean probability of producing B in ECout given A as input was 0.93 and the highest mean 
probability of producing A in ECout given B as input was also 0.93. (Without a lesion, both 
probabilities reached 0.97.) (C) Pattern similarity after 10,000 training trials, with 1,000 trials per 
epoch over 10 epochs. (By default there are 800 total trials, with 80 trials per epoch over 10 epochs.) 
CA1 structure did not deteriorate over time, as was seen with CA3 and DG. Initial pair structure was 
very strong in CA1 after this extensive training, and settled structure was even stronger throughout the 
network. (D) Timecourse of pattern similarity in the initial response in each region over 10,000 trials. 
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Supplementary Figure 2. Undeveloped TSP. (A) Average representational similarity after training 
with a TSP lesion. DG and CA3 did not have any activity, so there was no structure in those regions. 
(B) Average probability of activating a particular item on the output given a particular item on the 
input, over training. Output and CA1 similarity structure were very similar to the intact model (Fig. 
2D, 2F).  
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Supplementary Figure 3. Inhibition and pair learning. (A, B, C) For reference purposes, exact copies 
of Figure 2D-F, where k=2 in ECin and ECout at test. (D) Average representational similarity for the 
initial and settled response with k=3 at test (k=2 was used in all cases during training). The results are 
very similar, with slightly higher similarity for shuffled pairs in CA1. (E) Average representational 
similarity by pair type. (F) Average probability of activating a particular item on the output given a 
particular item on the input, over training. With k=3, incorrect responses are more frequent. This is the 
cause of the higher shuffled similarity in CA1, as the network is encouraged to activate a third unit 
(despite it always being incorrect). 
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Supplementary Figure 4. Inhibition and community structure. (A) Average representational 
similarity for the initial response using k=2 at test, and for the settled response using k=2, k=3, and 
k=5 at test (initial response is qualitatively similar across inhibition values). Top two rows correspond 
to Figure 5A, visualized on a different scale. Lowering inhibition at test strengthened community 
structure — each additional activated member of the community helped emphasize their common 
structure. (B) The graph used to generate the sequences, for reference (identical to Figure 3B). (C) 
Average proportion of output units activated that were from the same versus different community as 
the test item, over training. The k=2 variant cannot activate more than 2 out of 5 community members, 
so the best possible performance is 0.4, whereas the k=5 variant can activate all members and achieve 
1.0 (k=3, not shown to reduce clutter, falls between k=2 and k=5). (D, E) Average representational 
similarity with k=2 and k=5 (k=3 is intermediate) for two neighboring nodes from the same 
community (within internal), the two boundary nodes from the same community (within boundary), 
two adjacent boundary nodes from different communities (across boundary), and all other pairs of 
items from different communities (across other). Higher-level structure is more prominent after 
settling with k=5: within boundary is almost as similar as within internal, and across boundary is 
almost as dissimilar as across other. Thus, across both the associative inference simulations (described 
in the main paper) and the community structure simulations, allowing activation to spread with lower 
inhibition (i.e., higher k) is useful in promoting transitive inference. In fact, spreading activation with 
low inhibition at test is, in theory, sufficient to uncover transitive associates in both the community 
structure and associative inference paradigms, which means that the TSP can potentially support 
successful behavior in these cases. This is difficult to probe in our model, however, because lesions to 
the MSP result in difficulties conveying information from the TSP to EC. Another crucial note here is 
that, while allowing activation to spread further at test (with learning turned off) is useful, allowing 
activation to spread further during learning can have deleterious consequences in the current version 
of the model. With the model’s current learning rule, allowing the transitive associate to pop up in 
minus phases during training is detrimental to transitive behavior and representations because the plus 
phase (the target pattern) always contains only the direct associates — the two items actually 
presented together. In this situation, since the transitive associate is present during the minus phase 
but not the plus phase, the learning rule will act to weaken the transitive associate. Future modeling 
work could explore modifications to the learning rule such that strong retrieval of an associate that is 
not currently presented might lead to encoding of the transitive association, as has been proposed in 
integrative encoding accounts (5). Alternatively, the hippocampus may have periods of relatively low-
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inhibition retrieval in which no learning takes place, akin to the idea that low levels of acetylcholine 
in the hippocampus can allow retrieval without new learning (6, 7). This modulation would occur at a 
lower frequency than the theta oscillation (8, 9) and might be initiated by explicit or strategic attempts 
to retrieve additional associates. 
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Area # Units kWTA type Proportion activity (kWTA pct) kWTA pt 

ECin and ECout 8 / 15 / 9 kWTA Inhib k=2 (varying pct) 0.5 
DG 400 kWTA Avg Inhib 0.01 0.9 
CA3 80 kWTA Avg Inhib 0.06 0.7 
CA1 100 kWTA Avg Inhib 0.25 0.7 
 
Supplementary Table 1. Parameters for layer sizes and inhibition, as implemented in the Emergent 
simulation environment (4). Units in EC refer to pair learning / community structure / associative 
inference simulations. 
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Projection Weight range Scale (abs / rel) Connectivity lrate 

Input à ECin 0.25 – 0.75 1 / 1 1 to 1 0 
ECin à DG 0.25 – 0.75 1 / 1 25% 0.2 
ECin à CA3 0.25 – 0.75 1 / 1 25% 0.2 
DG à CA3 (mossy fiber) 0.89 – 0.91 1 / 8 5% 0 
CA3 à CA3 0.25 – 0.75 1 / 1 100% 0.2 
CA3 à CA1 (Schaffer) 0.25 – 0.75 1 / 1 100% 0.05 
ECin à CA1 0.25 – 0.75 3 / 1 100% 0.02 
CA1 à ECout  0.25 – 0.75 1 / 1 100% 0.02 
ECout à CA1 0.25 – 0.75 1 / 1 100% 0.02 
ECout à ECin 0.49 – 0.51 2 / .5 1 to 1 0 

    
Supplementary Table 2. Parameters for projections between layers. Weight range = range for 
uniform distribution over which weights were initialized. Scale = scaling of the projection relative to 
others (abs = absolute multiplier on weights in the projection; rel = relative weighting taking into 
account other projections to the layer). Connectivity = percent of units in sending layer projecting to a 
given unit in the receiving layer (rounded to nearest integer). For example, 25% connectivity from 
ECin to DG in the associative inference paradigm (9 ECin units) means that each DG unit receives 
input from 2 ECin units. “1 to 1” means that each unit in one layer connects to one unit in the other 
layer. lrate = learning rate. Note that by default, the CA1 à ECout pathway has scale abs = 4. We 
removed this because the kWTA dynamics in the model tend to cause full activation of the two 
stimuli in ECout, even when the input and target are graded (which is the case here, where activity is 
decayed for the previous item in a sequence). Decreasing the strength of this pathway reduces the 
tendency to fully activate both stimulus output units, which helps resist the kWTA dynamics and 
allows the model to produce activity in the minus phases that is better matched to the graded activity 
in the plus phase. We also chose a small decay (previous stimulus clamped to 0.9) because a steeper 
decay would cause more tension with these kWTA dynamics. These modifications help the network 
handle graded values given its particular implementation of competitive inhibition; however, we do 
not view them as assumptions or predictions about actual hippocampal architecture or dynamics. 
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