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A connectionist model of the balance scale task is presented which exhibits developmental
transitions between ‘Rule I' and ‘Rule II' behavior [Siegler, R. S. (1976). Three aspects of cog-
nitive development. Cognitive Psychology, 8, 481-520.] as well as the ‘catastrophe flags’
seen in data from Jansen and van der Maas [Jansen, B. R. ], & van der Maas, H. L. ].
(2001). Evidence for the phase transition from Rule I to Rule II on the balance scale task.
Developmental Review, 21, 450-494]. The model extends a connectionist model of this task
[McClelland, J. L. (1989). Parallel distributed processing: Implications for cognition and
development. In R. G. M. Morris (Ed.), Parallel distributed processing: Implications for psychol-
ogy and neurobiology (pp. 8-45). Oxford: Clarendon Press] by introducing intrinsic variabil-
ity into processing and by allowing the network to adapt during testing in response to its
own outputs. The simulations direct attention to several aspects of the experimental data
indicating that children generally show gradual change in sensitivity to the distance
dimension on the balance scale. While a few children show larger changes than are char-
acteristic of the model, its ability to account for nearly all of the data using continuous pro-
cesses is consistent with the view that the transition from Rule I to Rule Il behavior is

typically continuous rather than discrete in nature.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

What is the nature of the underlying knowledge repre-
sentation that determines patterns of performance and
developmental change in children? This question has in-
spired an enormous amount of empirical and theoretical
work aimed at inferring mechanisms of development
based on children’s behavior. One window into these
developmental mechanisms that has been used exten-
sively is children’s performance on the balance scale task.
Interpretations of the data from this task have tapped into
a greater debate in cognitive science between two perspec-
tives. At one end of the spectrum is what we will call the
rule-based approach, which holds that performance in
tasks like the balance scale task is based on a small number
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of distinct and discrete rules that can be used to generate
responses to test items. Development consists of a progres-
sion through the use of a sequence of these rules. In this
view, children’s behavior is not simply describable by rules
but is actually caused by the use of explicit rule represen-
tations, e.g., through the retrieval of an explicit rule from
long-term memory to be used in a task (Kerkman &
Wright, 1988). At the other end of the spectrum is what
we will call the continuous perspective, which holds that
information is represented in a more graded manner that
is only approximately characterizable by the kinds of rules
in rule-based approaches, and transitions between stable
stages of performance are not in fact so abrupt when con-
sidered carefully. Connectionist models provide a possible
mechanism for this continuous change, in which knowl-
edge is stored as the weights of connections between sim-
ple neuron-like processing units. Rule-like behavior in a
task like the balance scale task emerges from small incre-
mental changes in the weights between these processing


http://www.elsevier.com/locate/COGNIT
mailto:aschap@stanford.edu
mailto:mcclelland@stanford.edu
mailto:mcclelland@stanford.edu
http://www.sciencedirect.com/science/journal/00100277

396 A.C. Schapiro, J.L. McClelland / Cognition 110 (2009) 395-411

units, which in turn lead to incremental changes in units’
activations. In the connectionist and, more generally, the
continuous approach, apparent qualitative change need
not reflect a discrete transition; behavior that might some-
times look like rule change is seen as arising from incre-
mental change in what is underlyingly continuous
processing.

Though connectionist models can approximate to an
arbitrary degree of accuracy the rule-like behavior of a sys-
tem that explicitly incorporates rules into knowledge rep-
resentation, the rule-based and continuous approaches
have different tendencies in their behavior that do not
motivate identical empirical predictions. For example,
especially in periods of transition, a continuous model pre-
dicts that there will tend to be graded sensitivity to the
dimensions relevant to the transition, whereas a strict
rule-based approach predicts that sensitivity to a particu-
lar dimension will either be present or absent. The ques-
tion we address here is whether there is indeed the
graded sensitivity that would be expected from the kinds
of transitions that tend to occur in continuous models.
We consider an elaborated version of McClelland’s (1989,
1995) connectionist model of the balance scale task and
compare it in detail to aspects of the relevant experimental
data. The model is used to account for the patterns of per-
formance found in an extensive investigation of transitions
in balance scale task performance by Jansen and van der
Maas (2001), bringing out aspects of the empirical data
that indicate continuity in transition.

1.1. Balance scale task

In the balance scale task, developed originally by Inhel-
der and Piaget (1958) and Piaget and Inhelder (1969), chil-
dren are shown a balance scale with a varying number of
weights placed on pegs on each side, at varying distances
from the fulcrum (see Fig. 1). While the movement of the
scale is prevented, the children are asked to imagine what
would happen if the scale were allowed to move freely;
they indicate whether they think the left or right side of
the scale would fall, or whether the two sides would be
in balance.

Siegler (1976, 1981) adopted the balance-scale para-
digm to test whether children’s behavior on the task is best
described by the use of rules. He used six item types: bal-
ance, weight, distance, conflict-weight, conflict-distance,
and conflict-balance. Children were classified as using a
particular rule based on their responses to test items of
each of these different types. Balance items have the same
number of weights at the same distance from the fulcrum
on each side. Weight items have different numbers of
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Fig. 1. The type of scale used in the balance scale task.

weights on each side at the same distance from the ful-
crum. Distance items have the same number of weights
at different distances. Conflict items have fewer weights
at a greater distance on one side of the fulcrum and more
weights at a smaller distance on the other. In conflict-
weight items, the correct answer is that the side with more
weight falls. In conflict-distance items, the correct answer
is that the side with weights at a greater distance falls. In
conflict-balance items, the correct answer is that the sides
balance.

Based on responses to a test containing several items of
each of the above item types, Siegler (1976) claimed that
children use one of four rules in determining which side
of the balance scale falls. The rules concern how to incor-
porate information from the two relevant dimensions of
the task. The first dimension is weight, which is called
the dominant dimension because younger children appear
to be more sensitive to it, and the second dimension is dis-
tance from the fulcrum, identified as the subordinate
dimension. According to Siegler’s analysis, children using
Rule I make their decision based only on the number of
weights on each side of the fulcrum. Children using Rule
II take distance into account when the number of weights
on both sides of the fulcrum is equal; otherwise they make
their decision based only on weight. Children using Rule III
always consider distance and weight but “muddle
through”, guess, or use some other incorrect rule when
the dimensions conflict. Rule IV is seen only in a minority
of adolescents and adults (Siegler & Chen, 2002). Individu-
als using Rule IV correctly make their decision by compar-
ing the torques (number of weights multiplied by distance
of those weights from the fulcrum) on each side of the
scale.

Since Siegler’s seminal investigations, there have been
many additional studies of the balance scale task, many
of which argue for alternative characterizations of the nat-
ure of children’s underlying knowledge representations.
First, the existence of rules in addition to the ones origi-
nally studied by Siegler has been suggested (Boom, Hoijt-
ink, & Kunnen, 2001; Ferretti, Butterfield, Cahn, &
Kerkman, 1985; Jansen & van der Maas, 2002; Norman-
deau, Larivee, Roulin, & Longeot, 1989; Siegler & Chen,
1998; Van Maanen, Been, & Sitjsma, 1989). Most relevant
here, though, are several instances of patterns observed
in children’s responses that are not fully consistent with
any single rule (Jansen & van der Maas, 1997; Jansen &
van der Maas, 2002; Siegler, 1981; van der Maas & Jansen,
2003). Jansen and van der Maas (1997) explained these
inconsistencies in terms of rule switching that occurs dur-
ing transition but admit that their presence is not ideal for
a rule-based perspective (Jansen and van der Maas, 2002,
p. 384). Another phenomenon that has been taken as evi-
dence against the rule-based perspective is the torque dif-
ference effect (Ferretti & Butterfield, 1986; Ferretti &
Butterfield, 1992; Ferretti et al., 1985). Children are more
likely to behave in accordance with a more advanced rule
when the difference between the torques on the two sides
of the scale is greater. This result is suggestive of a contin-
uous rather than a discrete or categorical rule-based mech-
anism. It has been argued that this effect only exists at
extreme torque difference levels (Jansen & van der Maas,



A.C. Schapiro, J.L. McClelland / Cognition 110 (2009) 395-411 397

1997; Van der Maas, Quinlan, & Jansen, 2007; Van Rijn, van
Someren, & van der Maas, 2003), but we find the clear
trend for increasing accuracy with increasing torque differ-
ence across all levels (see Fig. 4, Ferretti & Butterfield,
1986) to suggest the effect is present even at low torque
difference levels. Indeed, using variants of the balance
scale task that allow for continuity in children’s responses,
Wilkening and Anderson (1982), Wilkening and Anderson
(1991) have found direct evidence that children integrate
information about weight and distance in a way that is bet-
ter described by the weighted combination of the continu-
ous dimensions of the task than by a set of discrete
decision-tree rules like Siegler’s.

In a series of relevant articles (Jansen and van der Maas,
1997; Jansen and van der Maas, 2001; Jansen and van der
Maas, 2002) it has been argued that a rule-based perspec-
tive is the best characterization of children’s development
on the balance scale task (Quinlan, van der Maas, Jansen,
Booij, & Rendell, 2007; Van der Maas & Jansen, 2003). They
subscribe to a definition of rule that requires behavior to be
regular, consistent, and discontinuous (among other
things; Quinlan et al., 2007). Although they generally favor
a rule-based approach, they conclude that only the transi-
tion between Rules I and II and the transition to Rule IV
actually satisfy their conditions (2002). One body of data
often cited for the discontinuity between Rules [ and II is
from Jansen and van der Maas (2001). The simulations in
this paper will address these data specifically in order to
show that the evidence is consistent with a continuous ac-
count even in this transition.

Jansen and van der Maas (2001) apply the so-called cusp
model to data on the transition between Rules I and II to test
for signs of the discontinuity. The cusp model is derived
from catastrophe theory, a mathematical theory intended
to allow measurement of qualitative transitions, which are
defined as sudden changes in a dependent variable resulting
from small continuous changes in independent variables
(Raijmakers, van Koten, & Molenaar, 1996). According to
van der Maas and Molenaar (1992), the cusp model does
not specify a mechanism for qualitative change; it only de-
scribes that change. In this application of catastrophe the-
ory to the balance scale task, the dependent variable is
interpreted as the number of correct responses to a set of
distance items and the independent variables are the ability
to encode the distance difference - the difference in the dis-
tance of the weights to the fulcrum on the two sides - and
the number of weights placed on the balance scale on dis-
tance items. Derived from catastrophe theory are indica-
tions, called catastrophe flags, that a system is undergoing
a qualitative transition. These catastrophe flags can be de-
tected based on the behavior of the variables described
above. Jansen and van der Maas (2001) investigate the pres-
ence of some of these catastrophe flags — to be described in
detail below - to find evidence in children’s behavior for the
discontinuity in transition from Rule I to Rule II.

2. Experiment 1 of Jansen and van der Maas (2001)

In Experiment 1, Jansen and van der Maas (2001) tested
314 children from 6 to 10 years old on a paper-and-pencil

version of the balance scale task using pictures of balance
scales with different combinations of weights and dis-
tances (similar to Fig. 1). For each item, the children had
to circle an image corresponding to what they thought
the scale would look like if the blocking pin preventing
the scale from moving were taken out. Each child saw a to-
tal of 40 items, which were arranged into a practice test,
pretest, hysteresis test, posttest, control test, and diver-
gence test. These items were designed to test specifically
for the presence of the bimodality, inaccessible region, hys-
teresis, sudden jump, and divergence catastrophe flags.

2.1. Bimodality and inaccessibility

Bimodality and inaccessibility were assessed in the pre-
test, posttest, and divergence test. Bimodality in this con-
text refers to a bimodal distribution of scores when some
items in a test set require behavior at the level of Rule II
for correct performance, and some only require behavior
at the level of Rule I. In the pretest and posttest, there were
three distance items, one weight item, one conflict-weight
item, and one conflict-distance item. All six items in the
divergence test were distance items. In the pretest and
posttest, based on Siegler’s (1976) rules, children using
Rule I would succeed on the weight and conflict-weight
items, and children using Rule Il would succeed on those
as well as the distance items. Conflict-weight items were
not used in the analyses because scores on those items
negatively correlated with the other item types. The ex-
pected distribution for scores on the pretest and posttest
therefore becomes a bimodal one with modes falling on
one item correct for Rule I behavior and four items correct
for Rule Il behavior (see Fig. 2). For the divergence test, the
expected distribution has modes at zero correct and six
correct, since it consists entirely of distance items. Inacces-
sibility refers to absence of scores in the region between
these modes, which is expected in a rule-based perspective
because scores between modes are inconsistent with both
Rule I and Rule II behavior.

2.2. Hysteresis and sudden jump

Hysteresis and sudden jump were assessed in the hys-
teresis test. The hysteresis test consisted of a series of dis-
tance items, where the distance difference was
incrementally increased and then decreased over nine
items. Increasing the salience of the distance dimension
was expected to cause some children using Rule I who are
on the verge of transition to switch to Rule II, though most
children are expected to be consistent Rule I or II users. A
sudden jump is characterized by an immediate shift to
using Rule II as the distance difference increases, with no
shift back to Rule I as the distance difference decreases
again (see Fig. 2). In this application of the cusp model,
the child is thought to suddenly realize that the distance
dimension should be considered at some point during the
series of increasing distance differences because with each
step the distance dimension becomes more salient and
therefore easier to encode. Such a transition to the use of
Rule II could then lead the child to continue to perform cor-
rectly on distance items for the rest of the hysteresis test.
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Fig. 2. Examples of catastrophe flags considered by Jansen and van der
Maas (2001). In the bottom graph, correct performance on the item with a
given distance difference is represented as a 1 and incorrect performance
as a 0. Adapted, with permission, from Fig. 2, p. 455, of Jansen and van der
Maas (2001).

Another pattern, hysteresis (also called the delay pat-
tern), occurs if the child shifts to using Rule II as in the sud-
den jump, as the distance difference increases, and then
shifts back to using Rule I at a lower distance difference
than the one at which she shifted to Rule II. The child per-
sists in Rule II behavior until the distance dimension be-
comes less salient than it was when she made the switch
to Rule II. In the cusp model, the presence of this pattern
is considered sufficient evidence to conclude that the tran-
sition in question in discontinuous.

A third pattern a child can follow in the hysteresis test
is the Maxwell convention, which is like hysteresis except
that the child switches back to Rule I use at the same dis-
tance difference that she switched to Rule II use. The Max-
well convention is not considered a catastrophe flag.
Patterns of this type would be expected if the child simply
had a graded sensitivity to distance, allowing correct per-
formance on items with large distance differences to coex-
ist with incorrect ‘balance’ responses for small distance
differences.

The control test was designed to control for the possi-
bility that children would change their responses in the
hysteresis test because they were seeing so many of the
same type of item in a row. The greyness of the balance
scale item weights was gradually changed from black to
white and back to black over the nine items. Identical dis-
tance items were used in this test with a distance differ-
ence of three.

2.3. Divergence

The last catastrophe flag, divergence, was assessed in
the divergence test. The divergence test had six items,
which were all distance items with a distance difference
of two. Three of the items had one weight on each side,
and three had five weights on each side. The divergence
hypothesis, as stated by Jansen and van der Maas, is that
the distribution of scores for the items with five weights
is expected to be more bimodal than the distribution of
scores for the items with one weight. They expect that chil-
dren will be more likely to behave consistently with
whichever rule they are using when the dominant dimen-
sion, weight, is more salient. The divergence hypothesis
follows from this application of the cusp model to the bal-
ance scale task, but it does not represent the most intui-
tively clear sign of qualitative transition and was in fact
not detected in the children’s data or in any of the model
simulations.

2.4. Summary of results for children’s behavior

The pretest, posttest, and divergence test distributions
all showed the bimodality catastrophe flag as expected
(see Fig. 3). The modes for pretest and posttest were at
scores of one and four and the modes for the divergence
test were at scores of zero and six. There was also some de-
gree of inaccessibility between the two modes, with fewer
occurrences of scores that indicate behavior between Rules
I and II, especially in the divergence test. There was an ef-
fect of learning from the pretest to the posttest, where a
significant number of children moved from scores of one
on the pretest to higher scores on the posttest.

The hysteresis and sudden jump catastrophe flags were
present in the hysteresis test. Out of 314 children, 7
(2.228%) displayed a hysteresis pattern, 26 (8.280%) dis-
played a sudden jump pattern, and 11 (3.503%) displayed
a Maxwell convention pattern. In the control item set, no
children displayed hysteresis or Maxwell patterns, and 9
(2.866%) children displayed a sudden jump pattern. The
divergence catastrophe flag was not found in the diver-
gence test. The distribution of the scores for items with five
weights and the distribution of scores for items with one
weight were not significantly different.

In summary, four of the five catastrophe flags studied
were found in the experiment: bimodality, inaccessibility,
hysteresis, and sudden jump. There was also an overall
learning effect from the pretest to the posttest.

2.5. Latent class analysis

In their 2001 article and other articles, Jansen and van
der Maas have used latent class analysis as one of several
ways of analyzing children’s performance. In discussion
of their findings from these studies, we do not consider
the LCA results, relying instead on a direct examination
of the distribution across children of specific performance
profiles. We do not rely on the LCA analysis results for
the following reasons: First, LCA treats the data as coming
from a finite set of discrete classes, and we question the
assumption that this treatment is correct. Second, in
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Fig. 3. Results from Jansen and van der Maas (2001, Experiment 1).
Distributions of children’s scores on the pretest, posttest, and divergence
test. A child’s score for a given test was not counted in the distribution if
any of the values for that test were missing. Redrawn with permission
from Figs. 5 and 6 (both on p. 475) of Jansen and van der Maas (2001).
Copyright 2001 Elsevier B.V. All rights reserved.

practice, the application of LCA requires the researcher to
impose constraints to limit the number of free parameters.
Decisions must then be made about exactly what con-
straints should be imposed, and different decisions can
lead to different results. The method’s sensitivity to such
decisions makes it possible for the method to obscure
rather than reveal the structure present in the experimen-
tal data. In support of these points, Appendix A examines
Jansen and van der Maas’ (2001) application of LCA to their
pretest and posttest data. We provide evidence that the
pattern of results produced by this analysis can change if
different choices are made in imposing constraints on the
parameters. Our point is not to argue that LCA should not
be used, but only to argue that the method is not free of
difficulties (for further discussion of the strengths and
weaknesses of LCA, see Shultz & Takane, 2007; Siegler &

L R
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Weight Distance
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Fig. 4. Network used in the McClelland (1989) model of the balance scale
task. The input units that are filled in are activated to represent the
network being presented with the balance scale item shown. The
separation of the input units into the left and right sides of the fulcrum
and the ordering of the weight and distance units from lowest to highest,
as depicted, are unknown to the model before training. From Fig. 2.7, p.25,
from McClelland (1989). Reprinted by permission of Oxford University
Press.

Chen, 2002; Van der Maas et al., 2007). Because of the dif-
ficulties with LCA, we have relied instead on a more direct
consideration of the distribution of performance profiles
such as those in Table 1 and Table 2.

3. Simulations of Experiment 1 using the McClelland
(1989) model

We next present a simulation of the Jansen and van der
Maas experiment (2001, Experiment 1) using McClelland’s
(1989) model, looking specifically for the presence of
bimodality, inaccessibility, hysteresis, sudden jump, and
overall learning from pretest to posttest. The model has
been criticized for not exhibiting the catastrophe flags seen
in children’s responses (Raijmakers et al., 1996), and our
simulations confirm that the model falls short of account-
ing for many of these trends in the data. This exploration of
the original model’s behavior on the Jansen and van der
Maas experiment will serve as a basis for understanding
what behavior the original model was already capable of
successfully explaining and why the extensions we later
add allow a significantly better fit to the data.

3.1. Representation of the task
The network makes the same decision as the human

subjects; namely, when given a scale with a certain num-
ber of weights at certain distances from the fulcrum, the
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network decides if the left side of the scale goes down, if
the right side of the scale goes down, or if the sides bal-
ance. The network’s simple three-layer architecture is
shown in Fig. 4.

There are 20 input units, which are used to represent
the numbers of weights and distances of those weights
from the fulcrum for a given item. Each of these 20 units
corresponds to a different possible weight or distance va-
lue on the right or left side of the scale. Five of the input
units are used to represent one through five weights on
the left side of the scale, and five other units are used to
represent one through five weights on the right side of
the scale. There are also five units for the five distances
of the weights from the fulcrum on the left, and five other
units for the distances of the weights from the fulcrum on
the right. The network does not know before training
which input units correspond to which weights and dis-
tances on the scale. Each input unit has an activation of 1
when it is being used to represent its particular weight
or distance value and an activation of 0 otherwise.

Each of the 10 weight units projects to two of the hid-
den units, and each of the 10 distance units projects to
the other two hidden units. This architecture implements
the assumption that weight and distance are separately as-
sessed before they are combined when participants reason
about balance scales (see McClelland, 1989; McClelland,
1995, for further discussion). Each of the four hidden units
projects to each of the two output units. The output units, L
and R, correspond to the scale tipping to the left or to the
right. The network’s representation of the left side tipping
would have the L output unit near an activation of 1 and
the R output unit near an activation of 0, and vice versa
if the right side tips. Activations near 0.5 for both L and R
indicate the network’s decision that the scale balances.
More specifically, if the activation of the L output unit is
less than 1/3, the right side is interpreted as falling. If the
activation of the L output unit is greater than 2/3, the left
side is interpreted as falling. Otherwise the scale is inter-
preted as balancing.

3.2. Training

The training set has all the possible combinations of one
through five weights at one through five distances on one
peg on the left and one through five weights at one through
five distances on one peg on the right, for a total of
5 x 5 x 5 x 5=625 items. There are also nine added copies
of each of the items that has weights at the same distance
from the fulcrum on each side (1125 items added, 1750 to-
tal). These copies predispose the network to treat weight
as the dominant dimension. (Whether greater exposure
to cases in which weight varies is in fact the true basis of
the dominance of weight is not clear. Although McClelland,
1989, argued that this is one possible basis for the effect,
another is that distance is a more complex relationship,
depending jointly on the position of the weights and the
position of the fulcrum. See McClelland, 1995, for discus-
sion.) The weights connecting the input and hidden layers
and the hidden and output layers are initialized with ran-
dom values uniformly distributed between —0.5 and +0.5.
The network is trained in each epoch on the entire set de-

scribed above in randomly permuted order. Weights are
updated after each item is presented using back-propaga-
tion. No momentum is used, and the learning rate is 0.02.

3.3. Testing

After every epoch of training, the network was tested on
the items used by Jansen and van der Maas (2001), exclud-
ing items with values of six for weight or distance (see de-
tails of the items in Appendix B). These items were always
presented in the same order. All of the items were identical
in the control test, since the greyness of the weights is not
represented within the structure of the model. As in earlier
simulations with this model, the connection weights were
frozen during test sessions so that there was no change in
the network’s response as a result of experience with test
items.

The network was run independently 10 times and
epochs 5-60 of each run were used in analysis. The test
session at the end of each epoch is meant to represent an
individual child doing the experiment. The range of epochs
was chosen to obtain an approximate match to the overall
range of performance across the children tested in Jansen
and van der Maas (2001).

3.4. Results

The data for the pretest, posttest, and divergence test
items all showed bimodality. As in the data from Jansen
and van der Maas (2001), the modes for the pretest and
posttest distributions were at scores of one and four, and
the modes for the divergence test distribution were at
scores of zero and six (see Fig. 5). Though there is a clear
inaccessible region in the data from the divergence test,
there is a less pronounced inaccessible region in the pre-
test and posttest. There is also no learning effect from pre-
test to posttest, which is expected because there is no basis
for any change in performance during the test phase of the
network. Accordingly, the pretest and posttest distribu-
tions are almost identical.

The sudden jump and hysteresis catastrophe flags were
not present, which is also expected because there is no ba-
sis for change in the network’s performance during test.
Out of 560 trials, there were no hysteresis or sudden jump
patterns and 91 (16.250%) Maxwell convention patterns. In
the control items, there were no hysteresis, sudden jump,
or Maxwell patterns.

As in Jansen and van der Maas (2001), the divergence
hypothesis was not supported by the network data. The
distribution for the items with one weight and the distri-
bution for the items with five weights were very similar
[%* (3, N=560)=2.22, p=0.53].

3.5. Discussion

As in earlier investigations, the McClelland (1989) mod-
el appears to capture many of the patterns seen in chil-
dren’s balance scale behavior. Indeed, when there were
deviations from rule-like behavior observed in children
(Siegler, 1981), they tended to be similar to the types of
deviations observed in the model (McClelland, 1989), a
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result very suggestive of the need for some continuity in
the mechanisms underlying behavior in this task. In the
present case, these deviations are represented by the fact
that although there is indeed bimodality and inaccessibil-
ity in children’s scores on the balance scale task, neither
children nor the model exhibit complete inaccessibility.
The tendency of a fraction of the children and a fraction
of the network test sessions to result in intermediate
scores is suggestive of the presence of at least some degree
of underlying continuity in children, as in the model. The
presence of Maxwell patterns in the hysteresis test is an-
other indication of graded sensitivity to the distance
dimension, since Maxwell patterns represent better perfor-
mance on items with higher distance difference. Maxwell
patterns are also seen in the data from Jansen and van
der Maas (2001), though not as frequently as in the
simulation.

There are thus many successes of this model in describ-
ing the overall appearance of general rule-like behavior as
well as the observed deviations from that behavior. The
model uses no explicit representations of rules, suggesting
that the patterns of children’s behavior on this task may
not need to be explained through use of rules. The results
also suggest the stronger point that a more continuous ac-
count may be required to explain many of the details of the
data, since a strict rule-based account requiring consistent
performance within item types would not predict any
scores in the ‘inaccessible’ region, or any Maxwell patterns.

Despite the successes, this model does have significant
shortcomings. It is not able to show any changes in scores
from pretest to posttest, and does not show the sudden
jump and hysteresis catastrophe flags found by Jansen
and van der Maas (2001). These transitional behaviors
are important for the model to account for, and the sudden
jump and hysteresis catastrophe flags in particular might
seem to pose a challenge for the graded, continuous mech-
anisms of the model. We now present extensions to the
model, however, that allow it exhibit all of these effects
while still in this continuous framework, suggesting that
these catastrophe flags are perhaps not so indicative of dis-
continuous change after all.

4. Extensions to the model

Our approach to extending the model begins with the
observation that the balance scale test situation may differ
in several ways from the situations in which children learn
naturalistically about balance. In naturalistic situations —
for which the training regime used with the model is in-
tended as a simplified proxy - children are thought to
make implicit predictions in the course of, e.g., play on a
teeter-totter at a playground. In these situations, the mis-
match between the observed outcome and the implicit
prediction is treated in the model as underlying gradual
learning over developmental time. In testing situations,
however, in which a child is confronted with a long series
of highly similar balance scale problems one after another,
we suggest that additional processes may come into play.
One of these may be the allocation of attention to dimen-
sions of the task based on a child’s own overt (and hence

categorical) response to a given balance-scale stimulus
configuration.

This idea has elements in common with several other
approaches to performance change in the balance scale
task, in which progress from ‘Rule I’ to ‘Rule II' is thought
of as arising from a change in the use of the distance infor-
mation (c.f. Siegler 1976; Van Rijn et al., 2003). Our ap-
proach differs from these other approaches, however, in
that the other approaches treat the use of distance infor-
mation as an all-or-nothing matter, while in our approach
the influence of distance on the decision is a matter of de-
gree, modulated up or down by attention. (As an alterna-
tive to an attention-based approach, we also considered
the possibility that a child’s own overt response might
drive connection weight adjustment. While this remains
a possible approach, our explorations of this approach
did not yield results as good as those based on the alloca-
tion of attention. See Appendix C for details of these and
other explorations.)

4.1. Adaptive modification of gain

How might the allocation of attention be adjusted in a
graded or continuous fashion, based on a network’s re-
sponse to a given test problem? One proposal is to use
the adjustment of gain (Kruschke, 1992; Kruschke and
Movellan, 1991), a parameter that scales the effect of a
unit’s net input on its activation. Following Kruschke
(1992), we adopted the idea that dimensional attention,
operationalized as an adjustment to a dimension-specific
gain parameter, can be adjusted using a gradient-descent
procedure. To implement this within our network, we gave
the distance and weight hidden unit pools separate gain
values that separately control the degree of attention to
the distance and weight dimensions. Specifically, the acti-
vation of each of the hidden units processing weight infor-
mation was given by a =1/(1 + exp(—(gw * net))) where g,
is the gain parameter for the weight dimension. The activa-
tion of the hidden units for distance was similarly modu-
lated by the gain parameter for the distance dimension.

One innovation in our procedure relative to Kruschke
(1992) is that instead of using the difference between an
externally provided teaching signal and the activations pro-
duced by the network to calculate the necessary ‘error’
terms todrive attention adjustment, we instead used the dif-
ference between the network’s categorical overt response
and the graded activation values on which that response
was based. We represented the categorical overt response
in the same way that we represented externally provided
outcome information. That is, an overt response of ‘left side
down’ was represented [1, 0]; ‘right side down’ as [0, 1]; and
‘balance’ as [.5, .5]. Informally, this approach can be thought
of asimplementing the idea that the gainis adjusted to make
the network’s response to a given pattern more definite or
categorical. For example, output unit activations of [.83,
.21] would be scored (as in the original model, see descrip-
tion above) as a left-side-down response, corresponding to
the categorical response pattern [1, 0]. Adjustments would
then be made to both gain parameters to reduce the
difference between the assigned categorical response
pattern and the underlying graded activation values.
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4.2. Details of gain adjustment procedure

Gain was initialized at 1.0 at the beginning of each test
session and subsequently adjusted using the difference be-
tween the network’s actual graded response and the dis-
cretized response representation as the error signal. Gain
was updated after each item at test as follows:

gp,new = gp,old + Y * Z(éip * netip)

where g, new is the new gain for the hidden unit pool p
(ranging over the weight hidden unit pool and the distance
hidden unit pool), g, o4 is the old gain for the hidden pool
P, 0ip is the back-propagation delta term (Rumelhart, Hin-
ton, & Williams, 1986) for unit i in pool p, net;, is the net
input to that unit, and ) is the learning rate parameter
for gain adjustment. Activations of the units in the hidden
pools were then computed for the next item by applying
the logistic function after scaling a unit’s net input (with
noise added, as discussed below) by gp_new-

4.3. Noise

While the McClelland (1989) model was completely
deterministic in its behavior during the test phase, it is
clear that human behavior exhibits some variability. This
variability is often thought of as one of the sources of inno-
vation in behavior (as proposed, for example, by Siegler
and Munakata (1993)). Many connectionist models cap-
ture variability by translating deterministic activations
into probabilities at the response-selection stage (e.g.,
McClelland & Rumelhart, 1981). Subsequent research has
indicated, however, that there can be problems with this
approach: McClelland (1991) found that the policy used
by McClelland and Rumelhart (1981) led to a poor fit to
experimental data from experiments in which two inde-
pendent cues to item identity were manipulated (e.g.,
Massaro & Cohen, 1983). In addition, this approach re-

Table 1

quires additional ad hoc assumptions to account for vari-
ability in reaction times, and there are further, more
technical, difficulties (Ashby, 1982). A robust solution to
these problems is provided by assuming that variability
is actually intrinsic to processing (McClelland, 1991; McC-
lelland, 1993; Movellan & McClelland, 2001; Usher & McC-
lelland, 2001), an idea with precedent in theoretical
thinking about processing in neurons (Sejnowski, 1981).
In keeping with the approach taken in McClelland (1991)
and in Usher and McClelland (2001), a sample of normally
distributed zero-mean Gaussian noise was added during
test to a given unit’s net input before its activation was
calculated.

4.4. Parameters and simulation details

The gain learning rate parameter y was set to 1 and the
standard deviation of the noise was set to 0.1 in the re-
ported simulations. Other values considered did not im-
prove the fit to the data. All other parameters and
training and testing procedures are the same as in the sim-
ulation above with the McClelland (1989) model. The re-
sults presented below come from simulation of 30
independent networks, tested at the end of each epoch of
training, using epochs 5-60 in analysis. While attention
may vary to some degree during the naturalistic experi-
ences that are thought to give rise to the connection
weights in the network, we treat naturalistic learning epi-
sodes as spaced far enough apart so that attention would
revert to its default value between successive episodes.
Accordingly, gain was fixed at 1 during training of all of
the networks, and was reset to 1 at the beginning of each
test session.

4.5. Results

The pretest, posttest, and divergence test distributions
all showed bimodality and an inaccessible region (at least

Percentages of children and model test sessions displaying each combination of pretest and posttest score.

Pretest score Posttest score

Pretest totals

0 1 2 3 4 5
Children
0 3.691 0.671 0.671 0.000 0.000 0.000 5.034
1 0.671 33.221 5.705 4.698 6.711 1.007 52.013
2 0.000 1.678 0.671 1.007 0.671 0.336 4.362
3 0.336 0.336 1.342 1.342 4.698 0.336 8.389
4 0.000 0.000 0.000 3.356 16.443 4.698 24.497
5 0.000 0.000 0.000 1.007 1.342 3.356 5.705
Posttest totals 4.698 35.906 8.389 11.409 29.866 9.732
Model
0 4.583 0.595 0.000 0.000 0.000 0.000 5.179
1 0.833 27.024 2.262 1.190 0.417 0.000 31.726
2 0.000 1.607 1.250 1.012 0.357 0.000 4.226
3 0.000 0.357 0.833 5.655 8.631 0.060 15.536
4 0.000 0.060 0.060 2.440 39.107 0.714 42.381
5 0.000 0.000 0.000 0.000 0.238 0.714 0.952
Posttest totals 5.417 29.643 4.405 10.298 48.750 1.488

Note. Children’s data from the study reported in Jansen and van der Maas (2001), presented here by permission of the authors. Children with any missing
values in the pretest or posttest were removed from analyses. N = 298 for children; N = 1680 for model.
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Table 2
Percentages of children and model test sessions displaying different types
of patterns in hysteresis test.

Type of Distance difference
Eatienn First correct Last correct Children Model
rising falling
Rule I - - 31.847 29.464
Rule II 1 1 32.484 51.012
Hysteresis 5 4 0.000 -
Hysteresis 5 3 0.955 -
Hysteresis 5 2 0.318 -
Hysteresis 4 3 0.318 0.595
Hysteresis 4 2 0.000 0.417
Hysteresis 3 2 0.637 1.012
Maxwell 2 2 1.592 3.214
Maxwell 3 3 1.592 1.012
Maxwell 4 4 0.318 1.250
Maxwell 5 5 0.000 -
Sudden jump 2 1 4.140 4.881
Sudden jump 3 1 0.637 0.298
Sudden jump 4 1 1.592 0.000
Sudden jump 5 1 1.911 -
Residual - - 15.924 6.845
Missing _ _ 5.732 _
values

Note. The second column indicates the distance difference in the first half
of the hysteresis items (as the distance difference rises) at which
responses begin to be correct, and the third column indicates the last
distance difference in the second half of the hysteresis items (as the
distance difference falls) at which responses are still correct. N = 314 for
children; N = 1680 for model. Dashes are given for untested model con-
ditions (in the model the maximum distance difference is four). Children’s
data are from the study reported in Jansen and van der Maas (2001),
presented here by permission of the authors.

to a degree similar to that found by Jansen and van der
Maas (2001)), which were especially pronounced in the
posttest and divergence test distributions (see Fig. 6). The
modes in all three distributions were at the expected
scores.! The pretest and posttest distributions were signifi-
cantly different [»? (5, N =1680) = 28.64, p < 0.0001], with
a trend from pretest to posttest similar to that found by Jan-
sen and van der Maas (2001). We did a one-tailed sign test
across networks to determine whether there was an overall
increase in scores from pretest to posttest. The mean scores
on the pretest and posttest were compared for each of the 30
networks, and the null hypothesis, that there is no tendency
for an increase in scores from pretest to posttest, was re-
jected with p <0.0001. The null hypothesis was also, and
as definitively, rejected for the Jansen and van der Maas
data.

We also did a more detailed analysis of the trends in the
scores from pretest to posttest both for individual test ses-
sions of the networks and for individual children. The pur-
pose of this analysis was to determine whether the change
from pretest to posttest involved a graded or sudden tran-

! The pretest, posttest, and divergence distributions in the Jansen and
van der Maas data are shifted toward lower scores compared to the model,
indicating a difference in the overall distribution of abilities between the
model and the participants tested in the Jansen and van der Maas
experiment. Whereas the sampling in the network was uniform across
epochs, the sampling of children was not completely uniform across ages.
Since our focus is on patterns of transition, we did not adjust the
distribution of epochs used in testing to more closely match the distribu-
tion of ages of the children.

Model's scores on pretest

°
o

essions
o
(&)
1

204

test
© o o
- N w

Proportion of

0

0.6

0 1 2 3 4 5
Sum score

Model's scores on posttest

Proportion of test sessions

0 1 2 3 4 5
Sum score

Model's scores on divergence test

Proportion of test sessions

Sum score

Fig. 5. Results from a simulation of McClelland’s (1989) model on the
items from Jansen and van der Maas (2001). Distributions of pretest,
posttest, and divergence test session scores. Ten independent networks
were each tested after epochs 5-60, thereby contributing 56 scores per
network. Statistical tests and confidence intervals treat the network as
the random effect factor, although the random sequence of training
experiences within each epoch induces considerable (though not com-
plete) independence between epochs within networks.

sition from Rule I to Rule II performance, both for children
and for the networks. As shown in Table 1, Rule I or II
behavior was maintained consistently from pretest to
posttest (meaning a score of one on both the pretest and
posttest or a score of four on both the pretest and posttest)
for 49.664% of the children and for 66.131% of the test ses-
sions of all 30 networks. For both the children and the net-
works, where there was a pretest to posttest change, it was
often from a score of one to a score of two or three, or from
a score of two or three to a score of four. For example, of
the children who had a score of one on the pretest and a
higher score on the posttest, the posttest score actually fell
in the grey zone between one and four 57.409% of the time.
For the model, the posttest score fell in the grey zone
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Fig. 6. Results from an extension of McClelland’s (1989) model with noise
and gain. Distributions from 30 networks of pretest, posttest, and
divergence test session scores. There were again 56 scores per network.
Confidence interval calculations were done in the same way as in Fig. 5.

89.222% of the time. Overall, these data indicate that the
change from pretest to posttest is often graded in children,
but more discrete changes also occur. In the model, graded
changes predominate, although there are some cases of an
apparent “discrete stage” transition.?

The divergence hypothesis was again not supported by
the network’s results. There was no significant difference
between the distribution of scores for items with one
weight and the distribution of scores for items with five
weights [y? (3, N=1680)=0.97, p=0.81].

Both the hysteresis and sudden jump catastrophe flags
were found in the model’s performance on the hysteresis
item set. Of the 1680 total test sessions, 34 (2.024%) were

2 We explored using a higher level of noise in the model to see if this
would produce more large changes in score from pretest to posttest. While
this did produce greater variability in both the pretest and posttest scores,
it did not result in more jumps from a score of one to a score of four.

hysteresis patterns, 87 (5.179%) were sudden jump pat-
terns, and 92 (5.476%) were Maxwell patterns. In the con-
trol test, there was 1 (0.060%) hysteresis pattern, 7
(0.417%) sudden jump patterns, and 8 (0.476%) Maxwell
patterns. The difference between the distributions on the
two tests was highly significant [y? (5, N=1680)=
189.51, p < 0.0001].

Table 2 shows detailed data comparing the types of pat-
terns displayed by the children and the model in the hys-
teresis test. For each pattern, we indicate the size of the
distance difference for the first item correct in the se-
quence of items with rising distance difference and of the
last item correct in the sequence of items with falling dis-
tance difference. Of particular interest is the tendency for
the ‘sudden jumps’ displayed by both the model and the
children to occur at small values of the distance difference.
For both the children and the model, by far the most com-
mon sudden jump involves shifting from the incorrect ‘bal-
ance’ response when the difference distance is one to the
correct distance-based response when the difference dis-
tance is two, and then persisting with this same response
through the rest of the hysteresis test, including the final
test item for which the difference distance is one. In the
network, this kind of pattern arises when the network is al-
ready somewhat sensitive to distance difference, so that
once the distance difference starts to grow, a shift to Rule
II behavior occurs. Modest gain adjustment is then suffi-
cient to produce a slight change in sensitivity to distance
that looks like a ‘sudden jump'. It is true that the children
are more likely than the model to show larger sudden jump
patterns, but these cases are rare: cases in which the ‘sud-
den jump’ occurred at a distance difference of four or five
only occurred in a total of 3.503% of children (11/314).

Similarly, when there is a hysteresis pattern, the extent
of the hysteresis effect is often rather small, both for the
children and for the network. Only seven children
(2.229%) showed hysteresis effects, and of these, three in-
volved a shift of only one step, three a shift of two steps,
and one a shift of three steps. The model had about the
same rate of hysteresis, but there was a larger sample of
cases (34) due to the large number of model test sessions
(1680). For the model, a shift of size one occurred in
79.397% of the cases, but shifts of size two were also ob-
served (7 cases). Finally, it is worth noting once again the
presence of Maxwell patterns in both the children and
the network. Such patterns occurred in 3.503% of the chil-
dren and 5.476% of model test sessions.

5. General discussion

In two simulations, we have explored the ability of a
continuous connectionist model to capture the patterns
of change seen in the behavior of the 314 children tested
in the balance scale task experiment of Jansen and van
der Maas (2001). Even without any ability to change during
testing, the model captured many features of the data,
including two of the catastrophe flags they considered, as
well as several signs of a degree of graded sensitivity to
the distance dimension. These signs include partial inac-
cessibility — both children and the network produced
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scores in the inaccessible region some of the time - and
patterns such as the Maxwell pattern on the hysteresis
test. We then incorporated into the network the ability to
modulate attention in a testing environment and intro-
duced noise into processing, which has resulted in an ex-
tended version of the model that exhibits much more of
the detailed structure of the data. Among these details is
the presence of two additional catastrophe flags: hysteresis
and sudden jump.

Clearly, our model in its original form was not sufficient
to account for all of the data. Some mechanism for change
in the absence of explicit feedback had to be added to ad-
dress the fact that some children in the Jansen and van der
Maas (2001) experiment progressed in their performance
on balance scale distance problems during the course of
the experiment. We relied on two factors that have been
incorporated into other models: intrinsic noise in process-
ing (McClelland, 1991; Usher & McClelland, 2001) and
modulation of attention (Kruschke, 1992; Kruschke &
Movellan, 1991). Incorporating these factors, and also
using the network’s own output to drive gain adjustment,
were critical to allow the model to successfully account
for these findings. Although the use of the network’s own
output to drive gain adjustment is a new assumption, it
is similar to the use of the network’s own output to drive
connection-based learning. Output-driven learning - often
implemented by a “Hebbian” learning rule - may play a
role in the ability to learn without external outcome feed-
back in other tasks. One such case arises in McCandliss,
Fiez, Protopapas, Conway, and McClelland (2002), in which
Japanese adults learned to discriminate exaggerated [r/
and /l/ sounds without feedback. This learning has now
been modeled using a Hebbian, outcome-driven learning
rule by Vallabha and McClelland (2007).

The issue before us now is this: should the transition
from reliance only on weight in the balance scale task to
a reliance on distance when the weight on the two sides
of the balance scale is the same be viewed as a continuous
or a discrete transition? Drawing on the cusp model, Jan-
sen and van der Maas have used the presence of four catas-
trophe flags as evidence that the transition between Rule I
and Rule II behavior is discontinuous. The hysteresis, in
particular, has been considered sufficient evidence for dis-
continuity (Jansen & van der Maas, 2001, p. 457, Quinlan
et al.,, 2007, p. 421; Raijmakers et al., 1996, p. 105) and a
means of distinguishing between acceleration and discon-
tinuous change (Jansen & van der Maas, 2001, p. 452).

We have now presented a simulation of a model that
exhibits these catastrophe flags. Are we forced to conclude
that the model is exhibiting discontinuous change? While
we are sympathetic to the cusp model’s intention to cap-
ture discontinuities that can arise from an underlying con-
tinuous change, there are many reasons to think that our
model is not really exhibiting a true discontinuity. In the
model, the vast majority of the transitions that occurred
from Rule [ behavior were not to Rule II behavior. Though
there was an overall trend for scores to improve from the
pretest to the posttest, scores were not generally jumping
from one to four from the pretest to the posttest. The hys-
teresis patterns in the hysteresis test also suggest a graded
sensitivity to distance in the model, since the extent of the

hysteresis effect was generally small. In addition, the sud-
den jumps that occurred in the hysteresis test tended to
occur at low values of distance difference, as would be ex-
pected if an already moderate degree of sensitivity to dis-
tance difference underwent a slight increase. Based on
the above, we conclude that the model is capable of (vari-
ous degrees of) incremental change and that such incre-
mental change can underlie the appearance of the four
catastrophe flags seen in the Jansen and van der Maas data.

Given that the model could exhibit these flags through
incremental change, what are we to think about their
meaning when they occur in data from children? In large
part, the children exhibited the same qualitative signs of
continuity and graded sensitivity that the network did.
As in the network, the majority of the transitions that oc-
curred from pretest to posttest were not from Rule I to Rule
Il behavior. The children had a significant number of scores
in the inaccessible region, suggesting again some graded
sensitivity to the distance dimension. Like the network, a
few children exhibited Maxwell patterns in the hysteresis
test. Many children also exhibited ‘sudden jumps’ on the
low end of the distance difference progression and small
shifts in performance on the hysteresis test. This is all
behavior consistent with graded sensitivity to distance dif-
ference and incremental change in that sensitivity during
testing.

With these ideas in mind, it is worth discussing other
perspectives and models of children’s behavior on the bal-
ance scale task. First, in order to address patterns of incon-
sistent responding in the balance scale and other tasks,
Siegler (1996) introduced the ‘overlapping waves’ model.
According to this model and variants, discussed in Siegler
and Chen (2002) and Jansen and van der Maas (2002), chil-
dren can switch back and forth between the use of differ-
ent explicit rule representations (or ‘strategies’) in the
transition between periods of consistent use of rules, with
the probability of selecting each strategy gradually chang-
ing during the overlap period. While this is gradual change
in some sense, it is not what we mean when we argue for
continuity in transition. According to our approach, a child
who responds ‘balance’ with a distance difference of one or
two but who says that the side with the greater distance
will go down for larger distance differences is not switch-
ing between rules in this explicit sense, but simply exhib-
iting graded sensitivity to the distance dimension.
Although this child’s behavior could be described as one
of switching between one rule or strategy and another,
some new mechanism must now be invoked by the rule
theorist to explain just why and how a greater distance dif-
ference will trigger selection of a different rule.

The ACT-R model of the balance scale task from Van Rijn
et al. (2003) uses the concept of saliency to explain how
sensitivity to distance difference in periods of transition
can cause selection of a new rule. When the distance differ-
ence becomes noticeable enough (as determined jointly by
the magnitude of the distance difference and a saliency
parameter), the distance ‘property’ is ‘retrieved’ in a search
for possible properties on which the two sides of the bal-
ance scale may differ. This in turn triggers encoding of
the fact that the distances actually differ. This approach
shares with ours the idea that distance difference has a
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graded impact, but differs from it in that their model’s re-
trieval of the distance property, and hence its use of dis-
tance information, is an all-or-none event. If activation of
the distance property is sufficient to cross a threshold, dis-
tance information is used; otherwise it is not used.

Both our model and the model of Van Rijn et al., can ad-
dress the Maxwell, hysteresis, and sudden jump patterns
seen in children’s performance. The Van Rijn et al. model
explains the delay and sudden jump patterns by an addi-
tional factor: an increase in baseline activation of the dis-
tance property that occurs as a consequence of retrieval
of this property. If the increase in baseline activation is
small, the Maxwell pattern occurs; if it is large, the sudden
jump pattern occurs, and if it is intermediate, the delay
pattern occurs. Again, the mechanism is similar to ours in
that a prior use of distance information increases the ten-
dency to use such information on subsequent problems.

Given that both models can explain all three patterns, is
there any reason to prefer one account over the other? Per-
haps both models will turn out to be able to account
equally well for the Jansen and van der Maas data. How-
ever, it is worth noting that this remains to be seen for
the model of Van Rijn et al. These investigators did show
that, with different parameter values, the Maxwell, hyster-
esis, and sudden jump patterns could all be produced.
However they do not provide a quantitative comparison
of their model’s pattern of behavior to the patterns seen
in the data from children’s behavior. As a result, we do
not yet know if the mechanisms in the model would pro-
vide a consistent account of the rate of Maxwell, sudden
jump, and delay patterns while at the same time producing
approximately the right distribution of pretest and posttest
scores with approximately the right amount of change
from the pretest to posttest. Thus, at this point, there is
really no basis for knowing whether their model could
match these patterns in the data as well as ours has done.
We would certainly welcome a more detailed analysis to
understand how well their model can account for the de-
tails of children’s performance.

A further point in considering the two models is that in
ours, an underlying mechanism is proposed that produces
developmental differences in sensitivity to the weight and
distance cues as a function of experience outside the labo-
ratory testing situation. The Van Rijn et al., model, in con-
trast, currently stipulates that at certain points in
development, changes in sensitivity to weight and distance
occur, allowing first Rule I and then Rule II performance. A
strength of our approach, not shared by the Van Rijn et al.
model in its current form, is the fact that ours provides a
mechanistic simulation of the underlying developmental
change itself, rather than assuming that such change oc-
curs in order to account for developmental transitions.
We would also note that the gradual change in sensitivity
to distance information in our model mirrors the age-
dependent graded change in sensitivity to distance varia-
tion seen in the experiments of Wilkening and Anderson
(1982,1991), in which participants were allowed to make
graded responses. To our knowledge the Van Rijn et al.
model has not yet been applied to this phenomenon, and
new mechanisms for graded reliance on distance informa-
tion may turn out to be necessary for such an application.

In the simulations presented, we have not addressed
several of the important aspects of behavior beyond the
Rule II pattern on the balance scale task. In particular, we
have not considered Rule IV behavior or the nature of the
transitions that occur in the grey zone between Rules Il
and IV. We chose to focus on the data surrounding the
transition from Rule I to Rule II since it is here that others
have tended to see some of the clearest support for a dis-
continuous change in behavior. However, some comment
on these later phases of development is in order.

When children have reached a point in development
where they are sensitive to both the weight and distance
dimensions and these dimensions are placed in conflict,
intuition may well become an insufficient basis for re-
sponse. In order to respond accurately in such cases, it
may be necessary to employ a more explicit strategy. In-
deed, we have previously argued that true Rule IV behavior
that is often observed in older children and adults may in-
volve an explicit multiplication of weight and distance to
calculate which side of the scale has greater torque (see
McClelland, 1989; McClelland, 1995; McClelland & Jenkins,
1991, for discussion). Children (and adults) who appreciate
that weight and distance are both important but who do
not ‘know’ the torque rule may resort to other (imperfect)
strategies, including guessing (as in Siegler’s Rule III), and
possibly the Buggy Rule and/or the Addition Rule (Ferretti
et al, 1985; Normandeau et al., 1989). For the simple cases
(weight, distance, and balance items), where the cues are
not pitted against each other, we suggest that more impli-
cit tendencies of the kind exhibited by our model may
characterize the behavior of many, if not all, children. Pre-
vious work with our model also indicates that patterns of
response choices on conflict problems similar to those pro-
duced by the strategies mentioned above - particularly,
the Addition Rule or Buggy Rule - can also arise in our
model. (Since the model exhibits the use of rules only on
a descriptive level, it would account for the identical pat-
terns of responses expected by use of the Addition Rule
or Buggy Rule, but would not predict the reaction time ef-
fects that would be expected from the explicit use of either
of these strategies.) To us there therefore remains consid-
erable uncertainty about the degree to which performance
in the grey zone between Rule II and Rule IV is based on
implicit or explicit processes. It is possible that the best ac-
count will involve a mixture of explicit and implicit
strategies.

Even in earlier phases of development, it is possible that
explicit rules are used by children in some cases, and there
are signs that for some children the transition from Rule I
to Rule I behavior may be abrupt. While most children
showed incremental change, there were also a few children
who went from scores of one on the pretest to four on the
posttest, and such transitions would be expected if chil-
dren were using explicit rules. Similarly, in the hysteresis
test, a few children exhibited sudden jumps at large dis-
tance differences. We stress that such events were rela-
tively rare even in children, and that even when they
occur, caution about whether a truly discontinuous change
has occurred may be in order. Though the model exhibits
large transitions less frequently than children do, it does
exhibit them sometimes, suggesting that a continuous
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mechanism may be at play even in cases where children’s
behavior shows an apparent sudden transition. It is also
possible that there would be other ways to adjust a con-
nectionist network (e.g., by making it recurrent rather than
strictly feed-forward, or by introducing lateral inhibition)
that would give rise to a greater degree of apparent discon-
tinuity from a change process (such as connection or gain
adjustment) that is underlyingly incremental in nature.

6. Conclusions

We have presented a connectionist model that accounts
for many of the trends found in children’s transition from
Rule I to Rule Il behavior on the balance scale task. A close
look at this transition in children and in the model has
shown that many of the details of the data seem to be more
consistent with the continuous than the rule-based per-
spective for many, if not all, children. Children go through
periods of stable performance that can be described by cer-
tain qualitative properties; e.g., showing little or no sensi-
tivity to an important cue such as distance while
performing correctly with respect to the weight cue, or
performing correctly on problems requiring use of both
weight and distance cues. The transitions between these
qualitative patterns are not always discontinuous, how-
ever, since intermediate behavior is often observed in the
transitional periods. Describing performance in terms of
rules can provide an approximate characterization of
behavior, since children spend most of their developmen-
tal time in periods of apparent stasis between transitions.
This relative accuracy of description, though, does not im-
ply that the knowledge representation that causes this
behavior is in the form of rules, and the observed behavior
at transitions and our model’s ability to account for it sug-
gest that in fact this is not the case.

The true picture likely involves a complex relationship
between implicit and explicit levels of knowledge repre-
sentation and the roles that they play in determining the
way that children solve the items on the balance scale task.
Perhaps children are forming explicit rules as approximate
self-descriptions of their implicit knowledge or are inte-
grating these different types of knowledge in some other
way (see McClelland, 1995, for further discussion). In our
perspective, we do not take the position that that there is
no such thing as discrete and explicit knowledge. Our view
is simply that performance may often be based on implicit
knowledge instead of, or in addition to, explicit rules or
strategies.

The overall level of success of the presented model of
the transition from Rule I to Rule Il behavior and the clear
presence of signs of graded sensitivity to distance in the
data strongly suggest that a rule-based perspective (Jansen
& van der Maas, 2001; Jansen & van der Maas, 2002; Quin-
lan et al., 2007; Siegler & Chen, 2002) cannot be the com-
plete account of developmental change on the balance
scale task. While some of the cited papers have conceded
that discrete rules are not always the whole story, their
authors nevertheless persist in the view that a rule-based
approach is fundamentally correct. Our findings challenge
these researchers to show convincing evidence that expli-
cit rules are ever needed to account for the transition from

ignoring distance completely (‘Rule I') to taking it into ac-
count when another stronger cue is in balance (‘Rule II').
Though some of the children’s transitions are of the kind
expected from shifts between different rules, even these
can sometimes be observed in our continuous model of
this transition.

Several patterns of behavior that were thought to sug-
gest rule use have been displayed by a model that does
not explicitly represent rules, and observed behavior that
deviates from the rule-based perspective has proven to
fit naturally into the continuous perspective. Our findings
suggest that models that stress underlying continuity in
behavior have a significant role to play in the emerging
understanding of the mechanisms of developmental
transitions.
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Appendix A. Comments on latent class analysis

Here we consider the latent class model and associated
parameters from Table 5 of Jansen and van der Maas
(2001), reprinted here as our Table 3. This table shows
the probability of a child in the latent classes interpreted
as Rule 0, Rule I, Rule II, or Rule III getting each item in
the pretest and posttest correct. Matching superscripts
indicate constraints imposed on parameter values assigned
to particular problems in each latent class. These con-
straints specify that certain test items will share the same
response tendency within the class. For example, within
the ‘Rule I latent class, the probability of responding cor-
rectly is assumed to be the same for all three of the dis-
tance items.

Comparing the results of the pretest and posttest latent
class analysis is complicated by the fact that the set of clas-
ses identified and the characteristics of each class are al-
lowed to differ between the pretest and the posttest. To
name three such differences: (1) Only three classes were
identified in the pretest whereas four were identified in
the posttest. (2) In the pretest, probability correct is con-
strained to be the same for all six problems in the Rule 0
latent class, while no such constraint is employed for the
Rule 0 latent class in the posttest. (3) In other cases, the
constraints imposed in the pretest and posttest for latent
classes assigned to the same nominal rule are consistent,
but response probabilities for a given type of item are al-
lowed to differ between the pretest and posttest. For
example, the probability of correct response to a distance
item under the pretest ‘Rule II' latent class is .90 while
the corresponding probability for the posttest ‘Rule II' la-
tent class is .84.

These differences in the latent classes employed for the
pretest and posttest make it difficult to compare the results
of the two tests, since the same pattern of responding can
be assigned to two different classes on the pretest and
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Table 3

Estimated parameters for latent class models of the pretest and the posttest, Experiment 1.

p(l.c.) p(Item = Correct) Interpretation
Distance 1 Weight Distance 2 cw Distance 3 CD

Pretest

.52 .02! .98? .02! 1.00° 02! .003 Rule I

.39 .90* .982 .90* .75° .90* 25° Rule I

.09 .16° 165 .16° 166 .16° 168 Rule 0

Posttest

37 .03! 1.00 .03! 972 .03! .032 Rule I

32 .84° .95 .843 .94% 843 .06* Rule 1I

.09 .06 13 12 .04 .25 22 Rule 0

21 1.00 91 1.00 42 .95 47 Rule 111

Note: Reprinted with permission from Table 5, p. 473, of Jansen and van der Maas (2001). Copyright 2001 Elsevier B.V.

posttest. This different treatment of the same pattern of
responding might explain the puzzling apparent decrease
in the use of ‘Rule II’ from pretest to posttest, a trend incon-
sistent with the evidence of an increase in Rule II behavior
shown in Fig. 3. The first column of Table 4 shows the per-
centage of children in the pretest falling into each of the la-
tent classes based on the probabilities given in Table 3 for
pretest latent classes. The last column shows the percent-
age of children in the posttest falling into each of the latent
classes based on the probabilities given for the posttest la-
tent classes. The number of participants classified into the
latent classes associated with Rule II decreases from the
pretest to posttest.

An alternative approach to applying LCA to these data
would be to treat performance in the pretest and posttest
as drawn from the same set of classes, rather than from dif-
ferent sets of classes. Such an approach seems consistent
with the viewpoint of Jansen and van der Maas, who view
transitions in performance as reflecting a shift from one
rule to another. We re-analyzed the data to see what it
would look like to use consistent sets of classes across
the pretest and posttest, and we present these results in
Table 4: the second column categorizes posttest results
using pretest latent class probabilities and the third col-
umn categorizes pretest results using posttest latent class
probabilities. Comparing the first pair of columns, which
now involve the same set of latent classes and class prob-
abilities, we see the expected increase in Rule II use. The
same holds for the second pair of columns. This analysis
supports our point that different decisions about how to

Table 4

Percentages of children falling into each of the pretest-based and posttest-
based latent classes when each set of classes is applied to performance at
pretest and posttest.

Pretest-based classes Posttest-based classes

At pretest At posttest At pretest At posttest
Rule I 52 37 52 37
Rule 11 39 50 24 32
Rule III 15 21
Rule 0 9 12 10 9

Note: Based on materials from the experiment of Jansen and van der Maas
(2001) provided by the authors and used for this analysis with their
permission.

constrain the application of LCA to the data can lead to dif-
ferent apparent patterns of change from pretest to posttest.

Appendix B

See Table 5.

Appendix C. Explored extensions
C.1. Learning during test

As mentioned in the section on extensions to the model,
one way that the self-teaching signal can be used is in
changing the network’s connection weights during the test
sessions using the network’s categorized overt response as
the basis of the error signal. In our investigations of this
procedure, we discarded the weight changes at the end
of each test session, so that a network’s performance on a
given test session would not be affected by learning on ear-
lier test sessions. This policy is appropriate here because
we are modeling effects of experience during testing in
children who are never tested twice. Rather than re-initial-
ize each trained network from scratch after each test, we
simply discarded any changes that occurred during testing
before continuing with network training. Thus, at the
beginning of each test session, the weights were saved,
and after test they were restored to the saved copy before
the next epoch of training.

Training the network during the test phase on its own
responses did result in a significant number of patterns
of hysteresis and sudden jump, but this policy for changing
the network’s weights caused the network’s performance
on the posttest to be worse than on the pretest. The reason
for this is that the weight changes produced by a response
favoring, say, the left side down tended to induce a posi-
tion bias, favoring left side down responses to later items.
This produced a disadvantage in the posttest, since the pre-
test distance items and hysteresis items favored one side of
the scale while the posttest distance items favored the
other. It is interesting that hysteresis and sudden jump
patterns thought to indicate a phase change can coexist
with a general decrease in level of performance. However,
the model’s tendency to perform worse on the posttest
than the pretest is not consistent with the findings of Jan-
sen and van der Maas (2001), and whatever change is
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Table 5
Details of network testing items.

Item Part of test Item type  Weights left Weights right

Number Position Number Position

1 Practice Distance 2 5 2 3
Practice Conflict- 3 2 4 1
distance
3 Practice Conflict- 1 5 2 4
weight
4 Practice Weight 2 3 4 3
5 Pretest Distance 5 1 5 3
6 Pretest Weight 5 4 3 4
7 Pretest Distance 3 2 3 4
8 Pretest Conflict- 1 5 2 3
weight
9 Pretest Distance 4 3 4
10 Pretest Conflict- 3 3 5
distance
11 Hysteresis  Distance 5 1 5 2
test
12 Hysteresis  Distance 5 1 5 3
test
13 Hysteresis  Distance 5 1 5 4
test
14 Hysteresis  Distance 5 1 5 5
test
15 Hysteresis  Distance 5 1 5 4
test
16 Hysteresis  Distance 5 1 5 3
test
17 Hysteresis  Distance 5 1 5 2
test
18 Posttest Distance 5 3 5 1
19 Posttest Weight 3 4 5 4
20 Posttest Distance 3 4 3 2
21 Posttest Conflict- 2 3 1 5
weight
22 Posttest Distance 4 4 4 3
23 Posttest Conflict- 5 1 3 3
distance
24 Control Distance 5 1 5 4
test
25 Control Distance 5 1 5 4
test
26 Control Distance 5 1 5 4
test
27 Control Distance 5 1 5 4
test
28 Control Distance 5 1 5 4
test
29 Control Distance 5 1 5 4
test
30 Control Distance 5 1 5 4
test
31 Divergence Distance 1 3 1 1
test
32 Divergence Distance 5 1 5 3
test
33 Divergence Distance 1 2 1 4
test
34 Divergence Distance 5 3 5 1
test
35 Divergence Distance 5 2 5 4
test
36 Divergence Distance 1 1 1 3
test

Note. Modifications from the Jansen and van der Maas (2001) items are a
change in the position of the weights to the left in the third practice item
from 6 to 5, and two items deleted from each of the hysteresis test and
control test to accommodate the network’s maximal distance difference
of four. Based on the list of items used in Jansen and van der Maas (2001),
presented here with their permission.

occurring in children’s performance is unlikely to depend
on a learned position bias.

C.2. Forcing symmetry

As discussed above, the weight adjustment during test
induced a side preference in the model which was not
apparent in children’s behavior, since in the specific mate-
rials used by Jansen and van der Mass, the pretest and hys-
teresis test all relied on distance items with the greater
distance on the same side, and the posttest items used
greater distance on the opposite side, and children per-
formed better, not worse, on the posttest. We explored
two different ways of eliminating this bias. Both of these
approaches directly build into the model a constraint that
children appear to follow in their learning; whether such a
constraint could itself be learned is an open question. Since
our focus was on continuity of stage transitions, the actual
source of the symmetry constraint seemed a separate mat-
ter that we set aside for later consideration.

C.3. Forcing symmetry by symmetrizing the test set

Symmetry can be enforced by presenting the network
with each item in the test set followed by the reflected ver-
sion of that item (for example, one weight at a distance of
five on the left and five weights at a distance of one on the
right followed by five weights at a distance of one on the
left and one weight at a distance of five on the right). This
eliminated the side preference, allowed for positive trans-
fer from pretest to posttest, and created a more pro-
nounced inaccessible region in the pretest and posttest
distributions, but was not enough to produce the degree
of learning from pretest to posttest seen in the children.

C4. Weight slaving

With the 4-input version of the architecture described
below, weights that represent corresponding information
for the two sides of the scale can be slaved together, treat-
ing the two hidden units responsible for each dimension as
symmetrical so that one will represent greater weight or
distance to the left, and the other will represent greater
weight or distance to the right. This was done by averaging
corresponding weights after any learning occurred (e.g., the
weight from the input unit for distance on the left to the
first hidden unit in the hidden layer for distance is averaged
with the weight from the input unit for distance on the
right to the second hidden unit in the same hidden layer).
This had a similar affect on the results as the reflected test
set had, and still did not produce a close enough correspon-
dence to the learning trends seen in children.

It should be noted that the background training set en-
forced symmetry only because there is in fact no statistical
bias over the full set of training patterns favoring either the
left or the right side to be the correct answer.

C.5. 4-Input architecture

Another possible modification to the model is to use an
architecture with only four, as opposed to twenty, input
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units. Instead of representing whether an individual
weight is on the scale and whether a weight is at a partic-
ular distance with units for each piece of information that
have activations of 0 or 1, we explored using four input
units: one for weight on the left, one for weight on the
right, one for distance on the left, and one for distance on
the right (this was also done by Shultz, Mareschal, &
Schmidt, 1994). Each of these units had activations of 0.2,
0.4, 0.6, 0.8, or 1, depending on whether there were 1, 2,
3, 4, or 5 weights at 1, 2, 3, 4, or 5 pegs from the fulcrum
on each side. The use of distinct units to represent different
amounts of weight and distance was discussed by McClel-
land (1995) as a shortcoming of the model because it does
not allow the network to extrapolate beyond or interpolate
within the range of values that it has experienced. On the
other hand, using this ordered representation of the dis-
tance and weight encodes the structure of each dimension
inherently so that the network does not do the work of
learning these relationships.

The 4-input architecture with training at test (as de-
scribed above) produced a remarkably pronounced inac-
cessible region in the pretest, posttest, and divergence
test (much more pronounced than the data from Jansen
and van der Maas, 2001). Often there were no scores of
two occurring at all in the pretest and posttest, though
there were always some scores of three. Several variants
of this architecture were explored (including versions in
which bias weights were eliminated, and in which symme-
try was forced by weight averaging, as described above).
Although some variants produced results addressing many
features of the Jansen and van der Maas (2001) data, none
produced as good a fit as the gain manipulation with the
original network architecture.
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