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Summary

Regularities are gradually represented in cortex after exten-

sive experience [1], and yet they can influence behavior after
minimal exposure [2, 3]. What kind of representations

support such rapid statistical learning? Themedial temporal
lobe (MTL) can represent information from even a single

experience [4], making it a good candidate system for assist-
ing in initial learning about regularities. We combined

anatomical segmentation of the MTL, high-resolution fMRI,
and multivariate pattern analysis to identify representations

of objects in cortical and hippocampal areas of human MTL,
assessing how these representations were shaped by expo-

sure to regularities. Subjects viewed a continuous visual
stream containing hidden temporal relationships—pairs of

objects that reliably appeared nearby in time. We compared
the pattern of blood oxygen level-dependent activity evoked

by each object before and after this exposure, and found that
perirhinal cortex, parahippocampal cortex, subiculum, CA1,

and CA2/CA3/dentate gyrus (CA2/3/DG) encoded regulari-
ties by increasing the representational similarity of their

constituent objects. Most regions exhibited bidirectional

associative shaping, whereas CA2/3/DG represented regu-
larities in a forward-looking predictive manner. These find-

ings suggest that object representations in MTL come to
mirror the temporal structure of the environment, supporting

rapid and incidental statistical learning.

Results

We often encounter new environments whose structure re-
mains stable over subsequent experiences. For example, we
pass the same landmarks while commuting to work, observe
the same interactions in a social group, and practice the same
plays when picking up a sport. Learning such regularities can
help us effectively perceive and act in familiar environments.

Neurophysiological studies suggest that medial temporal
lobe (MTL) cortex is involved in representing regularities. For
example, after viewing a sequence of fractal patterns repeat-
edly, neurons in macaque perirhinal cortex (PRC) respond
more similarly to fractals nearby in the sequence [5]. Similarly,
PRC neurons develop selectivity for paired stimuli in paired-
associate tasks [6]. This pair coding occurs even when learn-
ing is unsupervised and pairs are task irrelevant [7]. Although
sometimes attributed to area TE and inferior temporal cortex
(IT), PRC shows stronger and earlier effects [8] and is neces-
sary for learning to occur in IT [9, 10].

How the learning of regularities alters stimulus representa-
tions in hippocampus proper has been largely unexplored
*Correspondence: schapiro@princeton.edu
(cf. [11–13]). Human neuroimaging and patient studies support
the possibility that the hippocampus is involved in such
learning [3, 14, 15]. For example, the hippocampus responds
more strongly during incidental exposure to structured versus
random sequences [3]. However, prior studies of the intact
human brain have relied on univariate activation and could
thus not assess representational changes: Changes in activa-
tion do not necessarily reflect changes to the representations
of specific associated objects and might instead reflect
a scalar signal that can apply generically to any object (e.g.,
mutual information [16], novelty [17]).
The present work was inspired by the following questions:

What are the consequences of exposure to regularities for
representations in the humanMTL?What rolemight the hippo-
campus play in such rapid forms of statistical learning? How
do representations change from before to after learning?
To answer these questions, we used high-resolution fMRI to
measure how multivariate representations of objects in the
MTL are shaped by temporal regularities.

Behavior
Subjects viewed a 40 min stream of colorful fractals pre-
sented one at a time. During this time, they performed an
orthogonal cover task of detecting grayscale patches that
appeared infrequently on the fractals. Detection performance
was excellent (mean A’ = 0.893, SD = 0.038; t[16] = 42.9, p <
0.001). Unbeknownst to subjects, the fractal stream was
generated from temporal pairs (Figure 1A). For half of
these pairs, the two objects always appeared successively
(‘‘strong’’ pairs). For the other half, the objects appeared
successively one-third of the time (‘‘weak’’ pairs). These pairs
were used to generate the stream, but the fractals appeared
continuously with no cues to the boundaries between pairs
other than the temporal statistics. Before and after this expo-
sure, fractals were presented in a random order to assess
representational change (see below). Because the pair struc-
ture was disrupted by the final random run, we conducted
a separate behavioral experiment without this run. Subjects
could discriminate strong versus weak pairs (t[11] = 2.40,
p = 0.035; see Figure S1 available online), suggesting that
learning took place.

Region of Interest Analyses
We hypothesized that the representations of paired fractals
would become more similar after exposure to temporal struc-
ture. This cannot be tested during pair exposure because two
fractals appearing close in time will have similar representa-
tions simply due to the temporal autocorrelation of blood
oxygen level-dependent (BOLD) signal. To avoid this con-
found, we presented fractals in the same random order before
and after pair exposure and estimated the distributed neural
representation for each fractal with a GLM (Figure 1B).
We focused on the MTL, although other brain systems likely

also participate in and benefit from learning about regularities
[3]. MTL regions of interest (ROIs) were segmented manually
using anatomical landmarks and aligned into a common space
with the functional data. Because ROIs were segmented at a
higher anatomical resolution, the labeling of functional voxels
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Figure 1. Design and Analysis

(A) For each subject, fractals were randomly assigned to be the first or

second member of ‘‘strong’’ pairs or ‘‘weak’’ pairs. During sequence expo-

sure (middle runs), the order of fractals was generated from these pairs, with

the constraint that no pair appeared twice in a row. For strong pairs, the first

member was always followed by the second. For weak pairs, the first

member was followed by the second on only one-third of trials. To equate

the frequency ofmembers fromweak pairs, we inserted the secondmember

into the trial sequence on its own for the remaining two-thirds of trials. Trials

were presented continuously, with no grouping or segmentation cues to the

pair structure other than the temporal regularities.

(B) Before and after sequence exposure (first and last run, respectively), the

same fractals were presented in a random order. This allowed their repre-

sentations to be measured while avoiding the concern that the temporal

proximity of paired fractals would artificially increase their representational

similarity. The same random order was used in the first and last run to

equate for any spurious order effects or biases in modeling the BOLD

response. For each fractal, the parameter estimates across voxels in each

ROI were extracted and arranged into a vector. Pattern similarity was

assessed by computing the Pearson correlation of vectors from different

fractals. This produced three types of correlations: (1) between members

of a strong pair, (2) between members of a weak pair, and (3) between

members of different pairs (‘‘shuffled’’ pairs). In all runs, fractals were pre-

sented for 1 s, separated by a 1, 3, or 5 s ISI. Subjects always performed

an orthogonal cover task of detecting grayscale patches appearing

randomly on 10% of otherwise colorful fractals. Subjects responded on

every trial, indicating whether they saw a grayscale patch or not. See also

Figure S1.
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is inherently inexact. Therefore, these ROIs provide an index
of only the relative contribution of underlying subregions.
Patterns of parameter estimates for each fractal were ex-
tracted from every ROI and correlated before and after
learning.
We first examined bilateral MTL cortex (Figure 2), including

parahippocampal cortex (PHC), PRC, and entorhinal cortex
(ERC). The pattern correlation for fractals from strong pairs
increased from before to after learning over the entire MTL
cortex (t[16] = 3.01, p = 0.008), relative to the change in corre-
lation for recombinations of the same fractals (‘‘shuffled’’
pairs). This increase was reliable in PHC (t[16] = 2.53, p =
0.022) and PRC (t[16] = 2.45, p = 0.026), but not in ERC
(t[16] = 1.21, p = 0.245). Strong pairs also exhibited a greater
increase than weak pairs over the entire MTL cortex (t[16] =
4.08, p < 0.001), and in PHC (t[16] = 3.04, p = 0.008) and
PRC (t[16] = 3.96, p = 0.001), but only marginally in ERC
(t[16] = 2.08, p = 0.054). Weak pairs exhibited a decreased cor-
relation relative to shuffled pairs over the entire MTL cortex
(t[16] = 22.40, p = 0.029), and in PHC (t[16] = 22.27, p =
0.037) and PRC (t[16] = 22.14, p = 0.048), but not in ERC
(t[16] = 21.43, p = 0.173).
We next examined bilateral hippocampus, including subicu-

lum, CA1, and CA2/CA3/dentate gyrus (CA2/3/DG) ROIs. The
pattern correlation for fractals from strong pairs increased
from before to after learning over the entire hippocampus
(t[16] = 3.20, p = 0.006), relative to shuffled pairs. This in-
crease was reliable in subiculum (t[16] = 2.99, p = 0.009),
CA1 (t[16] = 3.61, p = 0.002), and CA2/3/DG (t[16] = 3.48, p =
0.003). Strong pairs also exhibited a greater increase than
weak pairs over the entire hippocampus (t[16] = 3.82, p =
0.002) and in subiculum (t[16] = 2.83, p = 0.012), CA1 (t[16] =
4.38, p < 0.001), and CA2/3/DG (t[16] = 4.64, p < 0.001).
Weak pairs exhibited a decrease in pattern correlation relative
to shuffled pairs over the entire hippocampus (t[16] = 22.15,
p = 0.048) and in CA2/3/DG (t[16] = 22.21, p = 0.042), but not
in subiculum (t[16] = 21.39, p = 0.183) or CA1 (t[16] = 21.71,
p = 0.107).

Searchlight Analyses
Above, we calculated correlations over all voxels in each ROI.
However, representational changes may have also occurred in
local subregions. To examine such local changes, we swept
a cubic searchlight through all MTL ROIs. These ROIs were
registered across subjects with nonlinear deformation tools
to allow for voxelwise statistical tests (permutation test p <
0.001). We focused on the main comparison of strong versus
weak pairs and found greater increases for strong pairs in right
and left PHC, left PRC, left subiculum, right CA1, and right
CA2/3/DG (Figure 3). An exploratory searchlight analysis
outside of theMTL revealed similar effects in four other regions
(Table S1).

Nature of Representational Shaping

Increased pattern similarity after learning could reflect
different types of changes in the underlying representations.
Seeing one member of a pair may activate the other because
their representations became unitized or connected. In this
case, after learning pair AB, the representation of A should
be similar to howBwas initially represented, and the represen-
tation of B should be similar to how A was initially represented
(‘‘association’’ hypothesis). Alternatively, because pairs ap-
peared in a fixed order, the first member may activate the
second more than the second activates the first. In this case,



Figure 2. ROI Results

Changes in pattern similarity (higher values indicate an increase) from before to after sequence exposure are shown for strong and weak pairs. The baseline

(shuffled pairs) reflects the change in correlation for recombinations of fractal images into untrained pairs. Brain images show segmented ROIs on a T2

anatomical scan for a representative subject (R = right, L = left). See text for primary bilateral analyses.

(A) MTL cortex: strong versus shuffled pairs (R, t[16] = 3.27, p = 0.005; L, t[16] = 2.27, p = 0.037), strong versus weak pairs (R, t[16] = 3.30, p = 0.004; L, t[16] =

3.10, p = 0.007), and weak versus shuffled pairs (R, t[16] = 21.26, p = 0.226; L, t[16] = 22.72, p = 0.015).

(B) MTL subregions: strong versus shuffled pairs (R PHC, t[16] = 2.54, p = 0.022; L PHC, t[16] = 1.95, p = 0.069; R PRC, t[16] = 2.55, p = 0.021; L PRC, t[16] =

1.13, p = 0.276; R ERC, t[16] = 1.09, p = 0.291; L ERC, t < 1), strong versus weak pairs (R PHC, t[16] = 2.70, p = 0.016; L PHC, t[16] = 2.83, p = 0.012; R PRC,

t[16] = 2.96, p = 0.009; L PRC, t[16] = 1.88, p = 0.078; R ERC, t < 1; L ERC, t[16] = 2.25, p = 0.039), and weak versus shuffled pairs (R PHC, t[16] = 21.05, p =

0.311; L PHC, t[16] = 22.62, p = 0.019; R PRC, t[16] = 21.28, p = 0.220; L PRC, t[16] = 21.79, p = 0.093; R ERC, t < 1; L ERC, t[16] = 23.31, p = 0.004).

(C) Hippocampus: strong versus shuffled pairs (R, t[16] = 3.79, p = 0.002; L, t[16] = 2.20, p = 0.042), strong versus weak pairs (R, t[16] = 4.27, p < 0.001;

L, t[16] = 2.51, p = 0.023), and weak versus shuffled pairs (R, t[16] = 21.46, p = 0.165; L, t[16] = 21.78, p = 0.095).

(D) Hippocampus subregions: strong versus shuffled pairs (R subiculum [SUB], t[16] = 2.77, p = 0.014; L SUB, t[16] = 2.66, p = 0.017; R CA1, t[16] = 3.03,

p = 0.008; L CA1, t[16] = 2.40, p = 0.029; R CA2/3/DG, t[16] = 3.67, p = 0.002; L CA2/3/DG, t[16] = 2.11, p = 0.051), strong versus weak pairs (R SUB, t[16] =

2.72, p = 0.015; L SUB, t[16] = 2.58, p = 0.020; R CA1, t[16] = 2.62, p = 0.019; L CA1, t[16] = 3.27, p = 0.005; R CA2/3/DG, t[16] = 4.26, p < 0.001; L CA2/3/

DG, t[16] = 2.47, p = 0.025), and weak versus shuffled pairs (R SUB, t < 1; L SUB, t[16] = 21.86, p = 0.082; R CA1, t < 1; L CA1, t[16] = 21.76, p = 0.098;

R CA2/3/DG, t[16] = 22.03, p = 0.060; L CA2/3/DG, t[16] = 21.27, p = 0.221). *p < 0.05; **p < 0.01; ***p < 0.001. Error bars denote 6 1 SEM. See also

Figure S2.
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the representation of A should be similar to how B was initially
represented, but the representation of B may not change as
much (‘‘prediction’’ hypothesis).

The association and prediction hypotheses are indistin-
guishable after learning because the AB pattern correlation
should be higher in both cases. However, correlating the
representation of one member after learning with the other
before learning is helpful (Figure 4): If the A representation
moved toward the initial B representation, then the A pattern
after learning (Apost) will resemble the B pattern before learning
(Bpre). If this correlation is greater than that for B after learning
(Bpost) with A before learning (Apre), then the prediction hypoth-
esis would be supported. We therefore defined an asymmetry
index, which reflects prediction if positive: corr(Apost,Bpre)–
corr(Bpost,Apre).
We limited this analysis to ROIs and conditions that showed

overall increases because it only makes sense to ask how
representations changed if there was an overall change to
begin with. Over the entire MTL cortex and hippocampus
ROIs, only right hippocampus showed marginal evidence for
asymmetric changes (t[16] = 2.06, p = 0.056; right MTL cortex:
t[16] = 1.33, p = 0.201; left MTL cortex and hippocampus:
ts < 1). Among subregions, only right CA2/3/DG exhibited
asymmetric changes (t[16] = 2.55, p = 0.022), with a trend
in right subiculum (t[16] = 1.82, p = 0.087), consistent with
the encoding of forward-looking predictions. The index was



Figure 3. Searchlight Results

ROIs for each subject were warped to a common

template (green). Searchlights within right and

left PHC, left PRC, left SUB, right CA1, and

right CA2/3/DG showed a greater increase in

pattern similarity for strong versus weak pairs

(p < 0.001 uncorrected). The lack of a left PRC

increase in ROI analyses suggests that noise

from other voxels may have swamped a local

effect. The lack of searchlight effects in right

PRC, right SUB, left CA1, and left CA2/3/DG

despite increases in ROI analyses suggests that

the underlying representations were distributed

beyond the scope of searchlights, that we

benefitted from the increased statistical power of ROI analyses and greater voxel sample sizes, and/or that specific locations of local changes were mis-

aligned across subjects. For visualization, differences in pattern similarity for strong versus weak pairs were assigned to the center voxel of each searchlight

and resulting statistical maps were thresholded at p < 0.01. See also Figure S3 and Table S1.
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nonsignificant in all other ROIs (ts < 1), consistent with them
encoding bidirectional associations.

Discussion

We found that object representations in the MTL rapidly
changed based on incidental exposure to temporal regulari-
ties. That is, the multivoxel representations of strongly paired
objects became more similar in PRC, PHC, subiculum, CA1,
and CA2/3/DG, with this increase occurring asymmetrically
in CA2/3/DG. The discovery that distributed patterns in the
MTL are tuned by regularities sheds light on the role of the
humanMTL in statistical learning, beyondwhat can be inferred
from univariate methods [3, 16, 17]. This ability to track multi-
voxel representations of specific items [18], in particular, holds
great promise for studying the formation and evolution of
representations in memory [19, 20].

Representational Changes

The plasticity observed in PRC/PHC may reflect similar
changes in the selectivity of neurons towhat has been reported
in nonhuman primates [5]. The way that representations of
paired items might change ranges on a continuum from
completely indistinguishable or ‘‘unitized’’ [21] to largely dis-
crete but weakly associated. Our results are consistent with
either possibility. Indeed, PRC exhibits both types of changes,
with subregion A35 supporting unitized representations and
A36 supporting associative representations [22]. Relatedly,
PHC has been implicated in associative retrieval, contextual
associations, relational memory, and event order memory
[23–27], all processes that could be supportedby the represen-
tational changes we observed.
The use of fMRI allowed us to assess representational

changes in the MTL more broadly. We were especially inter-
ested in the hippocampus because of its ability to rapidly
encode information [4], its circuitry specialized for sequential
processing [28, 29], and hints of its involvement in similar
forms of learning [3, 14, 15]. Increases in representational simi-
larity were widespread in the hippocampus, analogous to
multivariate changes in MTL cortex. This discovery challenges
the standard view that learning of regularities is the domain
of cortex [4]. The generality of these changes suggests that
multiple hippocampal subfields may be involved in represent-
ing regularities. However, an important limitation of the current
study is that our fMRI resolution and preprocessing, combined
with the point-spread function of the BOLD response, gen-
erate ambiguity in attributing voxel-level responses to partic-
ular subfields. Future studies with higher functional resolution
and field strength are needed to address this issue, but as
a first step we replicated our pattern of results very closely
using only voxels for which we had the highest confidence in
subfield membership (Figures S3 and S4).
The apparent generalitymay also result from the interactivity

of subfields. For instance, subiculum and CA1 are thought to
compare predictions generated by CA3 with current input
transmitted from ERC [30, 31]. How patterns in CA3 and ERC
relate to patterns in subiculum/CA1—and how these inter-
actions generate match-mismatch signals—are interesting
Figure 4. Asymmetry Results

If the first member of a pair (fractal A) elicits the

representation of the second member (fractal B)

but not vice versa, then the correlation of A post-

learning with B prelearning should be greater

than that of B postlearning with A prelearning.

Among the seven ROIs that showed increased

pattern similarity for strong pairs, only right

CA2/3/DG was reliably asymmetric. *p < 0.05.

Error bars denote 6 1 SEM. See also Figure S4.
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questions for future research. That said, not all subfields ex-
hibited the same pattern of results. For example, only CA2/3/
DG (and possibly subiculum) represented regularities predic-
tively: The first member of strong pairs reinstated the second
member more than the second reinstated the first. Within the
CA2/3/DG ROI, CA2, CA3, and DG cannot be distinguished,
and so these findings cannot be attributed to any one subfield.
Nevertheless, they are consistent with the role of CA3 in pre-
dicting future states, such as when place cells in rat CA3 fire
predictively to locations ahead of the current position during
navigation [29]. CA3may represent and retrieve temporal infor-
mation via recurrent dynamics [28], allowing it to reproduce
previously experienced sequences [32]. This predictive func-
tion may be a special case of ‘‘pattern completion,’’ whereby
partial cues reinstate information that was present during
encoding [33–35].

More generally, increases in representational similarity were
not universal. ERCdid not show increased pattern similarity for
strong pairs in either ROI or searchlight analyses. In addition,
across all ROIs, increased representational similarity only
occurred when fractal pairings were arbitrary (as in main anal-
yses): Strong pairs containing fractals that were visually similar
to beginwith did not show increases (Figure S2). These visually
similar pairs were presented under the same protocol as arbi-
trary pairs, suggesting specificity in our results not only to
strong regularities but also to regularities among dissimilar-
looking objects.

Hippocampus and Regularities

While the hippocampus is often studied in terms of its impor-
tant role in the formation of conscious or declarativememories
[36], a different perspective on hippocampal function focuses
instead on characterizing the kinds of learning processes that
it can support—including relational, configural, and contextual
learning [37]. We interpret our findings in this latter framework,
with hippocampal changes reflecting the learning of temporal
relationships. These relationships seemed to be learned inci-
dentally: they were orthogonal to the behavioral task, they
were not cued by instructions or timing, and no subjects re-
ported noticing the pairs when debriefed. As a result, we
have no reason to believe that the observed hippocampal
changes require strategic or intentional processes. Our find-
ings are thus consistent with the view that conscious accessi-
bility may not be a necessary consequence of hippocampally
mediated learning [38]. Although these issues are controver-
sial [39], learning occurs rapidly in all accounts of hippocampal
function [4, 34]. Thus, irrespective of awareness, the hippo-
campus is well-suited to forms of statistical learning that can
occur after minimal exposure [2, 3].

Open Questions
Although we focused on increased pattern similarity for
strong pairs, the opposite result was obtained for weak pairs.
This intriguing finding suggests a nonmonotonic relation-
ship between regularity strength and representational change:
Strong pairs appeared most frequently during exposure
(average joint probability of 0.067 each) and showed increased
pattern similarity, shuffled pairs were rare (0.006) and showed
no change in similarity, and weak pairs appeared occasionally
(0.022) but showed decreased similarity. How did intermediate
probabilities lead to differentiated representations? One
possibility is that during initial exposure to weak pairs, the first
member generated a feeble prediction of the second member
that was violated most of the time, leading to an eventual
prediction of nonoccurrence. This process might cause a
reduction in pattern similarity for these items from before to
after learning.
The role of the hippocampus and CA2/3/DG in particular in

generating predictions raises interesting questions about
what purpose these predictions serve. Such predictions may
be compared against sensory input in the hippocampus, to
refine existing knowledge [30, 31]. Predictionsmay also output
to more posterior temporal cortex. The same interlaminar
circuits in PRC that provide feedforward input during sensory
processing reverse during retrieval [40], providing feedback to
IT [8]. Indeed, objects that afford predictions activate both the
hippocampus and visual areas specialized for processing the
predicted information [15]. Future work could relate patterns
in MTL to the reinstatement of stimulus-specific patterns in
visual cortex and to facilitated sensory processing of pre-
dicted objects.

Conclusions

Our study demonstrates that temporal regularities cause
representational changes in the MTL. This statistical learning
can occur incidentally and rapidly, allowing the MTL to effi-
cientlymodel the structure of the environment. Such represen-
tations may underlie the tendency in naturalistic settings for
objects to effortlessly reactivate memories of other objects
experienced in similar contexts.

Experimental Procedures

The experimental procedures are summarized briefly throughout the

Results and in Figure 1 and are presented in complete detail in Supple-

mental Experimental Procedures.

Supplemental Information

Supplemental Information includes four figures, one table, and Supple-

mental Experimental Procedures and can be found with this article online

at http://dx.doi.org/10.1016/j.cub.2012.06.056.
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