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Exp 2: Interleaving affords subsequent feature inference
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Exp 3: Only interleaving permits slow inference based on statistical regularities
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A neural network model of the hippocampus

In neural network models, interleaved exposure 
facilitates forming distributed representations
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 AC inference requires extra time

 representations more distributed interference without orthogonalization

 Predictions

In an explicit slower task, associative inference can be solved with either 
strategy and should result in equivalent performance. 

In an implicit speeded task, inference over interleaved pairs should be 
superior to inference over blocked pairs. 
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We present evidence that, as in neural network models, interleaved exposure to information facilitates the formation of distributed 
representations in humans. Once formed, such representations support rapid, automatic inference across novel associations, and are 
especially critical for inference when learning requires statistical integration of information over time. 

Together, these results demonstrate the power of interleaved learning and implicate the use of distributed representations in rapid 
learning of structured information in humans.
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Under what conditions does the brain form distributed representations, 
and what do those representations allow you to do?


